|Table of Contents|

[1] Huang Kai, Lin Sheng, Zhou Jiancheng,. Numerical simulation of diffusion processfor oxidative dehydrogenation of butene to butadiene [J]. Journal of Southeast University (English Edition), 2015, 31 (4): 572-576. [doi:10.3969/j.issn.1003-7985.2015.04.024]
Copy

Numerical simulation of diffusion processfor oxidative dehydrogenation of butene to butadiene()
丁烯氧化脱氢制丁二烯反应扩散过程的数值模拟
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
31
Issue:
2015 4
Page:
572-576
Research Field:
Chemistry and Chemical Engineering
Publishing date:
2015-12-30

Info

Title:
Numerical simulation of diffusion processfor oxidative dehydrogenation of butene to butadiene
丁烯氧化脱氢制丁二烯反应扩散过程的数值模拟
Author(s):
Huang Kai Lin Sheng Zhou Jiancheng
School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
黄凯 林生 周建成
东南大学化学化工学院, 南京 211189
Keywords:
multi-scale model mass and heat transfer particle diameter oxidative dehydrogenation of butene to butadiene single particle model transfer resistance
多尺度模型 传质与传热 粒子直径 丁烯催化氧化制丁二烯 单颗粒模型 扩散阻力
PACS:
TQ015.9
DOI:
10.3969/j.issn.1003-7985.2015.04.024
Abstract:
A comprehensive single particle model which includes the mesoscale and microscale models was developed to study the influence of particle diameter on mass and heat transfer occurring within a ferrite catalyst during the oxidative dehydrogenation of butene to butadiene process. The verified model can be used to investigate the influence of catalyst diameter on the flow distribution inside the particle. The simulation results demonstrate that the mass fraction gradients of all species, temperature gradient and pressure gradient increase with the increase of the particle diameter. It means that there is a high intraparticle transfer resistance and strong diffusion when applying the large catalysts. The external particle mass transfer resistance is nearly constant under different particle diameters so that the effect of particle diameter at external diffusion can be ignored. A large particle diameter can lead to a high surface temperature, which indicates the external heat transfer resistance. Moreover, the selectivity of reaction may be changed with a variety of particle diameters so that choosing appropriate particle size can enhance the production of butadiene and optimize the reaction process.
为了研究催化剂粒子直径对丁烯催化氧化制丁二烯体系铁酸盐催化剂内外扩散的影响, 建立了介观和微观的多尺度模型.将该模型有效化后用来研究催化剂直径对粒子内流场的影响.模拟结果显示:所有组分的质量分数梯度、温度梯度和压力梯度随着粒子直径增大而变大, 表明增大粒子直径会使内扩散阻力增大、使内扩散越显著.在不同粒径的催化剂下, 组分外扩散传质阻力是一个常数, 粒径对粒子组分的外扩散影响不大.随着粒子直径增大, 粒子外表面温度增加, 即外扩散传热阻力增大.此外, 催化剂粒径的变化会影响丁烯催化氧化制丁二烯反应的选择性, 选择合适粒径的催化剂能够优化反应过程和提高目标产物丁二烯的产率.

References:

[1] Park J H, Row K, Shin C H. Oxidative dehydrogenation of 1-butene to1, 3-butadiene over BiFe0.65NixxMo oxide catalysts: effect of nickel content [J]. Catalysis Communications, 2013, 31(10): 76-80.
[2] Ji C J, Kim H, Choi A S, et al. Effect of pH in the preparation of γ-Bi2MoO6 for oxidative dehydrogenation of n-butene to 1, 3-butadiene: correlation between catalytic performance and oxygen mobility of γ-Bi2MoO6[J]. Catalysis Communications, 2007, 8(3): 625-628.
[3] Cortés I, Rubio O, Herguido J, et al. Kinetics under dynamic conditions of the oxidative dehydrogenation of butane with doped V/MgO [J]. Catalysis Today, 2004, 91-92: 281-284.
[4] Lee H, Jung J C, Kim H, et al. Preparation of ZnFe2O4 catalysts by a co-precipitation method using aqueous buffer solution and their catalytic activity for oxidative dehydrogenation of n-butene to 1, 3-butadiene [J]. Catalysis Letters, 2008, 122(3/4): 281-286.
[5] Yin Y G, Xu W Q, DeGuzman R, et al. Studies of stability and reactivity of synthetic cryptomelane-like manganese oxide octahedral molecular sieves [J]. Inorganic Chemistry, 1994, 33(19): 4384-4389.
[6] Lee H, Jung J C, Song I K. Oxidative dehydrogenation of n-Butene to 1, 3-butadiene over sulfated ZnFe2O4 catalyst [J]. Catalysis Letters, 2009, 133(3/4): 321-327.
[7] Solsvik J, Jakobsen H A. Modeling of multicomponent mass diffusion in porous spherical pellets: application to steam methane reforming and methanol synthesis [J]. Chemical Engineering Science, 2011, 66(9): 1986-2000.
[8] Ding X J, Xiao D L, Wang X L, et al. The redox model of the kinetics for the oxidative dehydrogenation over the ferrite catalyst [J]. Journal of Molecular Catalysis, 1988, 2(1): 25-30.(in Chinese)
[9] Liu G Z. F-90 ferrite fixed bed catalyst for oxidative dehydrogenation of n-Butene to butadiene [J]. China Synthetic Rubber Industry, 1991, 14(3): 179-182.(in Chinese)
[10] Jin Y, Yu Q Q, Xu X Q, et al. The effect of intraparticle diffusion on the oxidative dehydrogenation of butane-1 over Fe-Mg-Zn [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 1986, 2: 29-36.(in Chinese)
[11] Jin Y, Yu Q Q, He X C, et al. The effect of intraparticle diffusion on the deep dehydrogenation of butadiene over Fe-Mg-Zn [J]. Environmental Science, 1986, 7(1): 2-7.(in Chinese)
[12] Weidenfeller B, Hofer M, Schilling F R. Thermal conductivity, thermal diffusivity, and specific heat capacity of particle filled polypropylene [J]. Composites Part A: Applied Science and Manufacturing, 2004, 35(4): 423-429.

Memo

Memo:
Biography: Huang Kai(1973—), male, doctor, associate professor, huangk@seu.edu.cn.
Foundation items: The National Science Foundation of China(No.21576049, 21576050), the Fundamental Research Funds for the Central Universities(No. 2242014K10025).
Citation: Huang Kai, Lin Sheng, Zhou Jiancheng. Numerical simulation of diffusion process for oxidative dehydrogenation of butene to butadiene[J].Journal of Southeast University(English Edition), 2015, 31(4):572-576.[doi:10.3969/j.issn.1003-7985.2015.04.024]
Last Update: 2015-12-20