|Table of Contents|

[1] Wang Shengxiang, Wang Shuanhong,. Enveloping algebras of generalized H-Hom-Lie algebras [J]. Journal of Southeast University (English Edition), 2015, 31 (4): 588-590. [doi:10.3969/j.issn.1003-7985.2015.04.027]
Copy

Enveloping algebras of generalized H-Hom-Lie algebras()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
31
Issue:
2015 4
Page:
588-590
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2015-12-30

Info

Title:
Enveloping algebras of generalized H-Hom-Lie algebras
Author(s):
Wang Shengxiang1 2 Wang Shuanhong1
1Department of Mathematics, Southeast University, Nanjing 211189, China
2School of Mathematics and Statistics, Chuzhou University, Chuzhou 239000, China
Keywords:
enveloping algebra generalized H-Hom-Lie algebra Yetter-Drinfeld category
PACS:
O153.5
DOI:
10.3969/j.issn.1003-7985.2015.04.027
Abstract:
Let H be a Hopf algebra and HHHYD the Yetter-Drinfeld category over H. First, the enveloping algebra of generalized H-Hom-Lie algebra L, i.e., Hom-Lie algebra L in the category HHHYD, is constructed. Secondly, it is obtained that U(L)=T(L)/I, where I is the Hom-ideal of T(L)generated by {ll′-l(-1)·l′⊗l0-[l, l′]l, l′∈L}, and u:LT(L)/I is the canonical map. Finally, as the applications of the result, the enveloping algebras of generalized H-Lie algebras, i.e., the Lie algebras in the category HHHYD and the Hom-Lie algebras in the category of left H-comodules are presented, respectively.

References:

[1] Hartwig J T, Larsson D, Silvestrov S D. Deformations of Lie algebras using σ-derivations [J]. J Algebra, 2006, 295(2): 314-361.
[2] Makhlouf A, Silvestrov S D. Hom-algebra structures [J]. J Gen Lie Theory, 2008, 3(2): 51-64.
[3] Makhlouf A, Silvestrov S D. Hom-Lie admissible Hom-coalgebras and Hom-Hopf algebras [C]//Generalized Lie Theory in Mathematics, Physics and Beyond. Berlin:Springer-Verlag, 2009:189-206.
[4] Makhlouf A, Silvestrov S D. Hom-algebras and Hom-coalgebras [J]. J Algebra Appl, 2010, 9(4): 553-589.
[5] Chen Y Y, Wang Z W, Zhang L Y. Quasi-triangular Hom-Lie bialgebras [J]. J Lie Theory, 2012, 22(4):1075-1089.
[6] Caenepeel S, Goyvaerts I. Monoidal Hom-Hopf algebras [J]. Comm Algebra, 2011, 39(6): 2216-2240.
[7] Yau D. The Hom-Yang-Baxter equation, Hom-Lie algebras, and quasi-triangular bialgebras [J]. J Phys A, 2009, 42(16): 165202-1-165202-12.
[8] Yau D. Enveloping algebra of Hom-Lie algebras [J]. J Gen Lie Theory Appl, 2008, 2(2): 95-108.
[9] Wang S X, Wang S H. Hom-Lie algebras in Yetter-Drinfeld categories [J]. Comm Algebra, 2014, 42(10): 4540-4561.
[10] Sweedler M E. Hopf algebras [M]. New York: Benjamin, 1969.
[11] Radford D E. The structure of Hopf algebra with a projection [J]. J Algebra, 1985, 92(2): 322-347.
[12] Wang S H. On the generalized H-Lie structure of associative algebras in Yetter-Drinfeld categories [J]. Comm Algebra, 2002, 30(1): 307-325.

Memo

Memo:
Biographies: Wang Shengxiang(1979—), male, doctor, wangsx-math@163.com; Wang Shuanhong(corresponding author), male, doctor, professor, shuanhwang@seu.edu.cn.
Foundation items: The National Natural Science Foundation of China(No.11371088), the Excellent Young Talents Fund of Anhui Province(No.2013SQRL092ZD), the Natural Science Foundation of Higher Education Institutions of Anhui Province(No.KJ2015A294), China Postdoctoral Science Foundation(No.2015M571725), the Excellent Young Talents Fund of Chuzhou University(No.2013RC001).
Citation: Wang Shengxiang, Wang Shuanhong. Enveloping algebras of generalized H-Hom-Lie algebras[J].Journal of Southeast University(English Edition), 2015, 31(4):588-590.[doi:10.3969/j.issn.1003-7985.2015.04.027]
Last Update: 2015-12-20