[1] Muller K, Mika S, Ratsch G, et al. An introduction to kernel-based learning algorithms [J]. IEEE Transactions on Neural Networks, 2001, 12(2): 181-202. DOI:10.1109/72.914517.
[2] Xu Jianhua, Zhang Xuegong, Li Yanda. Kernel MSE algorithm: a unified framework for KFD, LS-SVM and KRR [C]//IEEE International Joint Conference on Neural Networks. Washington, DC, USA, 2001:1486-1491.
[3] Xu Yong, Zhang David, Yang Jian, et al. A two-phase test sample sparse representation method for use with face recognition [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2011, 21(9): 1255-1262.
[4] Zhang Lei, Yang Meng, Feng Xiangchu. Sparse representation or collaborative representation: Which helps face recognition? [C]//IEEE International Conference on Computer Vision. Barcelona, Spain, 2011: 471-478.
[5] Qi Zhu. Reformative nonlinear feature extraction using kernel MSE [J]. Neurocomputing, 2010, 73(16/17/18): 3334-3337. DOI:10.1016/j.neucom.2010.04.007.
[6] Zhao Yongping, Sun Jianguo, Du Zhonghua, et al. Pruning least objective contribution in KMSE [J]. Neurocomputing, 2011, 74(17): 3009-3018. DOI:10.1016/j.neucom.2011.04.004.
[7] Zhao Yongping, Wang Kangkang, Liu Jie, et. al. Incremental kernel minimum squared error(KMSE)[J]. Information Sciences, 2014, 270: 92-111. DOI:10.1016/j.ins.2014.02.117.
[8] Xu Yong, Yang Jingyu, Jin Zhong, et al. A learning approach to derive sparse kernel minimum square error model [C]//IEEE International Conference on Control and Automation.Guangzhou, China, 2007: 1278-1283.
[9]Wang Jinhua. A novel solution scheme for the kernel MSE model[C]//International Conference on Artificial Intelligence and Computational Intelligence. Shanghai, China, 2009: 375-378.
[10] Counterdrug Technology Development Program. The FERET database[EB/OL].(2004-06-16)[2016-01-30]. http://www.itl.nist.gov/iad/humanid/feret.
[11] Geogia Institute of Technology. Georgia Tech face database[EB/OL].(2010-01-01)[2016-01-30]. http://www.anefian.com/research/face_reco.htm.