[1] Wang H, Wu Y F, Ye S, et al. Analysis of the mode of crushing and stability in old cement pavement during asphalt overlay project[J]. Applied Mechanics & Materials, 2012, 204-208:1941-1944.
[2] Li X J, Wen H F. Effects of preoverlay pavement conditions and preoverlay repair methods on the performance of asphaltic concrete overlays [J]. Journal of Transportation Engineering, 2013, 140(1): 42-49.
[3] Garzon J, Duarte C A, Buttlar W. Analysis of reflective cracks in airfield pavements using a 3-D generalized finite element method [J]. Road Materials and Pavement Design, 2010, 11(2): 459-477. DOI:10.1080/14680629.2010.9690284.
[4] Bondt A H. Anti-reflective cracking design of (reinforced) asphaltic overlays [M]. Delft, the Netherlands: Delft University of Technology, 1999:2-20.
[5] Rigo J M, Degeimbre R, Francken L. Reflective cracking in pavements: State of the art and design recommendations [M]. Boca Raton: CRC Press, 2010: 3-10.
[6] Moreno-Navarro F, Sol-Sánchez M, Rubio-Gámez M C. Reuse of deconstructed tires as anti-reflective cracking mat systems in asphalt pavements [J]. Construction & Building Materials, 2014, 53(4): 182-189.
[7] Ogundipe O M, Thom N H, Collop A C. Evaluation of performance of stress-absorbing membrane interlayer(SAMI)using accelerated pavement testing [J]. International Journal of Pavement Engineering, 2013, 14(6): 569-578. DOI:10.1080/10298436.2012.742193.
[8] Wang H. A comparative study of fatigue performance to resist reflective cracking among three different stress-absorbing materials[J]. Applied Mechanics & Materials, 2013, 303-306:2625-2635.
[9] Chen Y, Lopp G, Roque R. Effects of an asphalt rubber membrane interlayer on pavement reflective cracking performance [J]. Journal of Materials in Civil Engineering, 2013, 25(12): 1936-1940. DOI:10.1061/(ASCE)MT.1943-5533.0000781.
[10] Zhou Y. Research on properties and key evaluation index of stress absorbing layer asphalt [D]. Xi’an, China: School of Materials Science and Engineering, Chang’an University, 2010.(in Chinese)
[11] Xue Y C, Qian Z D. Development and performance evaluation of epoxy asphalt concrete modified with mineral fiber [J]. Construction & Building Materials, 2016, 102: 378-383.
[12] Çubuk M, Gürü M, Çubuk M K. Improvement of bitumen performance with epoxy resin[J]. Fuel, 2009, 88(7): 1324-1328. DOI:10.1016/j.fuel.2008.12.024.
[13] Bocci E, Canestrari F. Analysis of structural compatibility at interface between asphalt concrete pavements and orthotropic steel deck surfaces [J]. Transportation Research Record, 2012, 2293:1-7.
[14] Zamora-Barraza D, Calzada-Pérez M A, Castro-Fresno D, et al. Evaluation of anti-reflective cracking systems using geosynthetics in the interlayer zone[J]. Geotextiles and Geomembranes, 2011, 29(2): 130-136. DOI:10.1016/j.geotexmem.2010.10.005.
[15] Huang W. Theory and method of deck paving design for long-span bridges [M]. Beijing: China Construction Industrial Press, 2006: 10-20.(in Chinese)
[16] Samanos J, Roffe J C, Tessonneau H, et al. New system for preventing reflective cracking: Membrane using reinforcement manufactured on site(MURMOS)[J]. Transportation Research Record, 1991, 1304: 59-65.
[17] Mukhtar M T, Dempsey B J. Interlayer stress absorbing composite(ISAC)for mitigating reflection cracking in asphalt concrete overlays [M]. Urbana-Champaign, Illinois, USA: University of Illinois at Urbana-Champaign, 1994: 2-36.
[18] Jamek M, Tschegg E K, Lugmayr R. Mechanical and fracture-mechanical properties of geosynthetic reinforced asphalt systems [J]. Fatigue & Fracture of Engineering Materials & Structures, 2012, 35(7): 648-657.
[19] Mohammad L N, Raqib M A, Huang B. Influence of asphalt tack coat materials on interface shear strength [J]. Transportation Research Record, 2002, 1789: 56-65.
[20] Ghuzlan K, Carpenter S H. Energy-derived/damage-based failure criteria for fatigue testing [J]. Transportation Research Record, 2000, 363: 141-149.