[1] Aringhieri R, Landa P, Soriano P, et al. A two level metaheuristic for the operating room scheduling and assignment problem [J]. Computers & Operations Research, 2015, 54: 21-34. DOI:10.1016/j.cor.2014.08.014.
[2] Choi S, Wilhelm W E. An approach to optimize block surgical schedules [J]. European Journal of Operational Research, 2014, 235(1): 138-148. DOI:10.1016/j.ejor.2013.10.040.
[3] Vijayakumar B, Parikh P J, Scott R, et al. A dual bin-packing approach to scheduling surgical cases at a publicly-funded hospital [J]. European Journal of Operational Research, 2013, 224(3): 583-591. DOI:10.1016/j.ejor.2012.09.010.
[4] Zhao Z X, Li X P. Scheduling elective surgeries with sequence-dependent setup times to multiple operating rooms using constraint programming [J]. Operations Research for Health Care, 2014, 3(3): 160-167. DOI:10.1016/j.orhc.2014.05.003.
[5] Augusto V, Xie X L, Perdomo V. Operating theatre scheduling with patient recovery in both operating rooms and recovery beds [J]. Computers & Industrial Engineering, 2010, 58(2): 231-238. DOI:10.1016/j.cie.2009.04.019.
[6] Devi S P, Rao K S, Sangeetha S S. Prediction of surgery times and scheduling of operation theaters in optholmology department [J]. Journal of Medical Systems, 2012, 36(2): 415-430. DOI:10.1007/s10916-010-9486-z.
[7] Wang Y, Tang J F, Pan Z D, et al. Particle swarm optimization-based planning and scheduling for a laminar-flow operating room with downstream resources [J]. Soft Computing, 2015, 19(10): 2913-2926. DOI:10.1007/s00500-014-1453-z.
[8] Wang Y, Miao Y H, Zhu H, et al. A particle swarm optimization algorithm on the surgery scheduling problem with downstream process [C]//Proceedings of Chinese Control and Decision. Guiyang, China, 2013: 850-855.
[9] Xiang W, Yin J, Lim G. Modified ant colony algorithm for surgery scheduling under multi-resource constraints [J]. Advances in Information Sciences & Service Sciences, 2013, 5(9): 810-818.
[10] Souki M, Rebai A. Heuristics for the operating theatre planning and scheduling [J]. Journal of Decision Systems, 2010, 19(2): 225-252. DOI:10.3166/jds.19.225-252.
[11] Wang S, Wang L, Xu Y. An estimation of distribution algorithm for solving hybrid flow-shop scheduling problem with stochastic processing time [C]//2013 32nd Chinese Control Conference(CCC). Xi’an, China, 2013: 2456-2461.
[12] Wang S, Wang L, Liu M, et al. An estimation of distribution algorithm for the multi-objective flexible job-shop scheduling problem [C]//2013 IEEE Symposium on Computational Intelligence in Scheduling(SCIS). Singapore, 2013: 13814107-1-13814107-8.
[13] Hauschild M, Pelikan M. An introduction and survey of estimation of distribution algorithms [J]. Swarm and Evolutionary Computation, 2011, 1(3): 111-128. DOI:10.1016/j.swevo.2011.08.003.
[14] Mühlenbein H. The equation for response to selection and its use for prediction [J]. Evolutionary Computation, 1997, 5(3): 303-346.
[15] Latif M S, Zhou H, Amir M. A hybrid quantum estimation of distribution algorithm(Q-EDA)for flow-shop scheduling [C]//Ninth International Conference on Natural Computation(ICNC). Shenyang, China, 2013: 654-658.
[16] Latif M S, Hong Z, Ali A. An estimation of distribution algorithm(EDA)variant with QGA for flowshop scheduling problem [C]//Sixth International Conference on Digital Image Processing(ICDIP 2014). Athens, Greece, 2014: 915908. DOI:10.1117/12.2064054.
[17] Liu Z, Wang S. Hybrid particle swarm optimization for permutation flow shop scheduling [C]//The Sixth World Congress on Intelligent Control and Automation, WCICA 2006. Dalian, China, 2006: 3245-3249.