[1] Alonso J B, Cabrera J, Medina M, et al. New approach in quantification of emotional intensity from the speech signal: Emotional temperature[J]. Expert Systems with Applications, 2015, 42(24): 9554-9564. DOI:10.1016/j.eswa.2015.07.062.
[2] Raptis S, Karabetsos S, Chalamandaris A, et al. A framework towards expressive speech analysis and synthesis with preliminary results[J]. Journal on Multimodal User Interfaces, 2015, 9(4):387-394.
[3] Kantrowitz J T, Hoptman M J, Leitman D I, et al. Neural substrates of auditory emotion recognition deficits in schizophrenia.[J]. Journal of the Society for Neuroscience, 2015, 35(44):14909-14921. DOI:10.1523/JNEUROSCI.4603-14.2015.
[4] Mao Q, Dong M, Huang Z, et al. Learning salient features for speech emotion recognition using convolutional neural networks[J]. IEEE Transactions on Multimedia, 2014, 16(8):2203-2213. DOI:10.1109/tmm.2014.2360798.
[5] Arruti A, Cearreta I, Alvarez A, et al. Feature selection for speech emotion recognition in Spanish and Basque: On the use of machine learning to improve human-computer interaction.[J]. Plos One, 2014, 9(10):e108975. DOI:10.1371/journal.pone.0108975.
[6] Ooi C S, Seng K P, Ang L M, et al. A new approach of audio emotion recognition[J]. Expert Systems with Applications, 2014, 41(13):5858-5869. DOI:10.1016/j.eswa.2014.03.026.
[7] Yan J. Speech emotion recognition based on sparse representation[J]. Archives of Acoustics, 2013, 38(4):465-470. DOI:10.2478/aoa-2013-0055.
[8] Xu X, Huang C, Wu C, et al. Graph learning based speaker independent speech emotion recognition[J]. Advances in Electrical & Computer Engineering, 2014, 14(2):17-22. DOI:10.4316/aece.2014.02003.
[9] Xu X, Deng J, Zheng W, et al. Dimensionality reduction for speech emotion features by multiscale kernels[C]//Annual Conference of International Speech Communication Association. Dresden, Germany, 2015:1532-1536.
[10] Zha C, Zhang X R, Zhao L, et al. Speaker-independent speech emotion recognition based multiple kernel learning of collaborative representation[J]. IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences, 2016, 99(3):756-759. DOI:10.1587/transfun.e99.a.756.
[11] Roweis S, Saul L. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290: 2323-2326. DOI:10.1126/science.290.5500.2323.
[12] He X, Niyogi P. Locality preserving projections[J]. Advances in Neural Information Processing Systems 16(NIPS 2003). Vancouver and Whistle, Canada, 2003.
[13] Cui Y, Fan L. A novel supervised dimensionality reduction algorithm: Graph-based Fisher analysis[J]. Pattern Recognition, 2012, 45(4):1471-1481. DOI:10.1016/j.patcog.2011.10.006.
[14] Belkin M, Niyogi P. Laplacian eigenmaps and spectral techniques for embedding and clustering[C]// Advances in Neural Information Processing Systems 14(NIPS 2001). Vancouver, Canada, 2001.
[15] Yu X, Wang X, Liu B. Supervised kernel neighborhood preserving projections for radar target recognition[J]. Signal Processing, 2008, 88(9): 2335-2339. DOI:10.1016/j.sigpro.2007.11.015.
[16] Burkhardt F, Paeschke A, Rolfes M, et al. A database of German emotional speech[C]//Eurospeech, European Conference on Speech Communication and Technology. Lisbon, Portugal, 2005:1517-1520.
[17] Martin O, Kotsia I, Macq B. The eNTERFACE’05 audio-visual emotion database[C]//22nd International Conference on Data Engineering Workshops. Atlanta, GA, USA, 2006.