[1] Jin Q, Li C, Chen S, et al. Speech emotion recognition with acoustic and lexical features[C]//IEEE International Conference on Acoustics, Speech and Signal Processing. Brisbane, Australia, 2015: 4749-4753.
[2] Ramakrishnan S, El Emary I M M. Speech emotion recognition approaches in human computer interaction[J]. Telecommunication Systems, 2013, 52(3): 1467-1478.
[3] Lu H, Frauendorfer D, Rabbi M, et al. StressSense: Detecting stress in unconstrained acoustic environments using smartphones[C]//Proceedings of the 2012 ACM Conference on Ubiquitous Computing. Pittsburgh, PA, USA, 2012: 351-360.
[4] Lee J S, Shin D H. A study on the interaction between human and smart devices based on emotion recognition[C]//Communications in Computer and Information Science. Berlin: Springer, 2013: 352-356.
[5] Anagnostopoulos C N, Iliou T, Giannoukos I. Features and classifiers for emotion recognition from speech: A survey from 2000 to 2011[J]. Artificial Intelligence Review, 2015, 43(2): 155-177. DOI:10.1007/s10462-012-9368-5.
[6] Ingale A B, Chaudhari D S. Speech emotion recognition[J]. International Journal of Soft Computing and Engineering, 2012, 2(1): 235-238.
[7] Lanjewar R B, Chaudhari D S. Speech emotion recognition: a review[J]. International Journal of Innovative Technology and Exploring Engineering, 2013, 2(4): 68-71.
[8] Huang C W, Wi D, Zhang X J, et al. Cascaded projection of Gaussian mixture model for emotion recognition in speech and EGG signal[J]. Journal of Southeast University(English Edition), 2015, 31(3):320-326.
[9] Wöllmer M, Schuller B, Eyben F, et al. Combining long short-term memory and dynamic bayesian networks for incremental emotion-sensitive artificial listening[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(5): 867-881. DOI:10.1109/jstsp.2010.2057200.
[10] Gharavian D, Sheikhan M, Nazerieh A, et al. Speech emotion recognition using FCBF feature selection method and GA-optimized fuzzy ARTMAP neural network[J]. Neural Computing and Applications, 2012, 21(8): 2115-2126. DOI:10.1007/s00521-011-0643-1.
[11] Wu D, Parsons T D, Narayanan S S. Acoustic feature analysis in speech emotion primitives estimation[C]//INTERSPEECH 2010, Conference of the International Speech Communication Association. Makuhari, Chiba, Japan, 2010:785-788.
[12] Swain M, Sahoo S, Routray A, et al. Study of feature combination using HMM and SVM for multilingual Odiya speech emotion recognition[J]. International Journal of Speech Technology, 2015, 18(3): 387-393. DOI:10.1007/s10772-015-9275-7.
[13] Khan M, Goskula T, Nasiruddin M, et al. Comparison between KNN and SVM method for speech emotion recognition[J]. International Journal on Computer Science and Engineering, 2011, 3(2): 607-611.
[14] Meng H, Bianchi-Berthouze N. Naturalistic affective expression classification by a multi-stage approach based on hidden markov models[M]//Affective Computing and Intelligent Interaction. Berlin: Springer, 2011: 378-387.
[15] Ramirez G A, Baltrušaitis T, Morency L P. Modeling latent discriminative dynamic of multi-dimensional affective signals[M]//Affective Computing and Intelligent Interaction. Berlin: Springer, 2011: 396-406.
[16] Gers F A, Schraudolph N N, Schmidhuber J. Learning precise timing with LSTM recurrent networks[J]. The Journal of Machine Learning Research, 2003, 3(1): 115-143.
[17] Schuller B, Valster M, Eyben F, et al. Avec 2012: The continuous audio/visual emotion challenge[C]//Proceedings of the 14th ACM International Conference on Multimodal Interaction. New York, USA:ACM, 2012: 449-456.
[18] Cowie R, Douglas-Cowie E, Savvidou S, et al. “FEELTRACE”: An instrument for recording perceived emotion in real time[C]//ITRW on Speech and Emotion. Newcastle, Northern Ireland, UK, 2000:19-24.
[19] Hall M A. Correlation-based feature selection for machine learning[D]. Hamilton, Zealand: Department of Computer Science, The University of Waikato, 1999.
[20] Gan W Y, Li D Y, Wang J M. Hierarchical clustering method based on data fields[J]. Acta Electronica Sinica, 2006, 34(2): 258-262.
[21] Weinberger K Q, Saul L K. Distance metric learning for large margin nearest neighbor classification[J]. The Journal of Machine Learning Research, 2009, 10(1): 207-244.
[22] Parpinelli R S, Lopes H S, Freitas A A. An ant colony based system for data mining: Applications to medical data[C]//Proceedings of the Genetic and Evolutionary Computation Conference. San Francisco, CA, USA, 2001: 791-797.