|Table of Contents|

[1] Zhang Ruoyu, Zhao Honglin,. An improved sparsity estimation variable step-sizematching pursuit algorithm [J]. Journal of Southeast University (English Edition), 2016, 32 (2): 164-169. [doi:10.3969/j.issn.1003-7985.2016.02.006]
Copy

An improved sparsity estimation variable step-sizematching pursuit algorithm()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
32
Issue:
2016 2
Page:
164-169
Research Field:
Information and Communication Engineering
Publishing date:
2016-06-20

Info

Title:
An improved sparsity estimation variable step-sizematching pursuit algorithm
Author(s):
Zhang Ruoyu Zhao Honglin
Communication Research Center, Harbin Institute of Technology, Harbin 150080, China
Keywords:
compressed sensing sparse signal reconstruction matching pursuit sparsity estimation
PACS:
TN911.7
DOI:
10.3969/j.issn.1003-7985.2016.02.006
Abstract:
To improve the reconstruction performance of the greedy algorithm for sparse signals, an improved greedy algorithm, called sparsity estimation variable step-size matching pursuit, is proposed. Compared with state-of-the-art greedy algorithms, the proposed algorithm incorporates the restricted isometry property and variable step-size, which is utilized for sparsity estimation and reduces the reconstruction time, respectively. Based on the sparsity estimation, the initial value including sparsity level and support set is computed at the beginning of the reconstruction, which provides preliminary sparsity information for signal reconstruction. Then, the residual and correlation are calculated according to the initial value and the support set is refined at the next iteration associated with variable step-size and backtracking. Finally, the correct support set is obtained when the halting condition is reached and the original signal is reconstructed accurately. The simulation results demonstrate that the proposed algorithm improves the recovery performance and considerably outperforms the existing algorithm in terms of the running time in sparse signal reconstruction.

References:

[1] Donoho D L. Compressed sensing [J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. DOI:10.1109/tit.2006.871582.
[2] Li Y, Sha X J, Wang K, et al. The weight-block compressed sensing and its application to image reconstruction [C]//2nd International Conference on Instrumentation, Measurement, Computer, Communication and Control. Hangzhou, China, 2012: 723-727.
[3] Candes E J, Tao T. Decoding by linear programming [J]. IEEE Transactions on Information Theory, 2005, 51(12):4203-4215. DOI:10.1109/tit.2005.858979.
[4] Figueiredo M, Nowak R D, Wright S J. Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems [J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 586-597. DOI:10.1109/jstsp.2007.910281.
[5] Tropp J A, Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit [J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666. DOI:10.1109/tit.2007.909108.
[6] Needell D, Vershynin R. Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit [J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 4(2): 310-316. DOI:10.1109/jstsp.2010.2042412.
[7] Donoho D L, Tsaig Y, Drori I, et al. Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2012, 58(2): 1094-1121. DOI:10.1109/tit.2011.2173241.
[8] Dai W, Milenkovic O. Subspace pursuit for compressive sensing signal reconstruction [J]. IEEE Transactions on Information Theory, 2009, 55(5): 2230-2249. DOI:10.1109/tit.2009.2016006.
[9] Needell D, Tropp J A. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples [J]. Applied and Computational Harmonic Analysis, 2009, 26(3):301-321. DOI:10.1016/j.acha.2008.07.002.
[10] Do T T, Lu G, Nguyen N, et al. Sparsity adaptive matching pursuit algorithm for practical compressed sensing [C]//Asilomar Conference on Signals, Systems and Computers. Pacific Grove, USA, 2008: 581-587.
[11] Yang C, Feng W, Feng H, et al. A sparsity adaptive subspace pursuit algorithm for compressive sampling [J]. Chinese Journal of Electronics, 2010, 38(8): 1914-1917.(in Chinese)
[12] Zhao Z J, Hu J W. A sparsity adaptive algorithm for wideband compressive spectrum sensing [J]. Telecommunications Science, 2014, 3(1): 100-104.(in Chinese)
[13] Yu Z. Variable step-size compressed sensing-based sparsity adaptive matching pursuit algorithm for speech reconstruction [C]//IEEE Chinese Control Conference. Nanjing, China, 2014: 7344-7349.
[14] Zhu Y W, Zhao Y J, Sun B. A modified sparsity adaptive matching pursuit algorithm [J]. Signal Processing, 2012, 28(1): 80-86.
[15] Candès E J. The restricted isometry property and its implications for compressed sensing [J]. Comptes Rendus Mathematique, 2008, 346(9/10): 589-592. DOI:10.1016/j.crma.2008.03.014.

Memo

Memo:
Biographies: Zhang Ruoyu(1992—), male, graduate; Zhao Honglin(corresponding author), male, doctor, professor, hlzhao@hit.edu.cn.
Foundation item: The National Basic Research Program of China(973 Program)(No.2013CB329003).
Citation: Zhang Ruoyu, Zhao Honglin. An improved sparsity estimation variable step-size matching pursuit algorithm[J].Journal of Southeast University(English Edition), 2016, 32(2):164-169.doi:10.3969/j.issn.1003-7985.2016.02.006.
Last Update: 2016-06-20