[1] Zeng W L, Lu X B. A generalized DAMRF image modeling for superresolution of license plates[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(2): 828-837. DOI:10.1109/tits.2011.2180714.
[2] Park S, Park M, Kang M. Super-resolution image reconstruction: A technical overview[J]. IEEE Signal Processing Magazine, 2003, 20(3): 21-36. DOI:10.1109/msp.2003.1203207.
[3] Keys R. Cubic convolution interpolation for digital image processing[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1981, 9(6): 1153-1160. DOI:10.1109/TASSP.1981.1163711.
[4] Chan T F, Ng M K, Yau A C, et al. Super-resolution image reconstruction using fast inpainting algorithms[J]. Applied and Computational Harmonic Analysis, 2007, 23(1): 3-24. DOI:10.1016/j.acha.2006.09.005.
[5] Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms[J]. Physica D: Nonlinear Phenomena, 1992, 60(/2/3/4): 259-268. DOI:10.1016/0167-2789(92)90242-f.
[6] Osher S, Burger M, Goldfarb D, et al. An iterative regularization method for total variation-based image restoration[J]. Multiscale Modeling & Simulation, 2005, 4(2): 460-489. DOI:10.1137/040605412.
[7] Ren Z, He C, Zhang Q. Fractional order total variation regularization for image super-resolution[J]. Signal Processing, 2013, 93(9): 2408-2421. DOI:10.1016/j.sigpro.2013.02.015.
[8] Zeng W L, Lu X B, Fei S M. Image super-resolution employing a spatial adaptive prior model[J]. Neurocomputing, 2015, 162: 218-233. DOI:10.1016/j.neucom.2015.03.049.
[9] Candè E J, Wakin M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 21-30. DOI:10.1109/msp.2007.914731.
[10] Yang J, Wright J, Huang T, et al. Image super-resolution as sparse representation of raw image patches[C]//IEEE Conference on Computer Vision and Pattern Recognition. Anchorage USA, 2008: 1-8.
[11] Yang J, Wright J, Huang T S, et al. Image super-resolution via sparse representation[J]. IEEE Transactions on Image Processing, 2010, 19(11): 2861-2873 DOI:10.1109/TIP.2010.2050625.
[12] Wang J, Zhu S, Gong Y. Resolution enhancement based on learning the sparse association of image patches[J]. Pattern Recognition Letters, 2010, 31(1): 1-10. DOI:10.1016/j.patrec.2009.09.004.
[13] Yang S, Liu Z, Wang M, et al. Multitask dictionary learning and sparse representation based single-image super-resolution reconstruction[J]. Neurocomputing, 2011, 74(17): 3193-3203. DOI:10.1016/j.neucom.2011.04.014.
[14] Peleg T, Elad M. A statistical prediction model based on sparse representations for single image super-resolution[J]. IEEE Transactions on Image Processing, 2014, 23(6): 2569-2582. DOI:10.1109/TIP.2014.2305844.
[15] Lu X, Yuan H, Yan P, et al. Geometry constrained sparse coding for single image super-resolution[C]//IEEE Conference on Computer Vision and Pattern Recognition. Providence, USA, 2012:1648-1655.
[16] Yang S, Wang M, Chen Y, et al. Single-image super-resolution reconstruction via learned geometric dictionaries and clustered sparse coding[J]. IEEE Transactions on Image Processing, 2012, 21(9): 4016-4028. DOI:10.1109/TIP.2012.2201491.
[17] Elad M, Aharon M. Image denoising via sparse and redundant representations over learned dictionaries[J]. IEEE Transactions on Image Processing, 2006, 15(12): 3736-3745.
[18] Candès E J, Wakin M B, Boyd S P. Enhancing sparsity by reweighted l1 minimization[J]. Journal of Fourier Analysis and Applications, 2008, 14(5/6): 877-905. DOI:10.1007/s00041-008-9045-x.
[19] Candès E J, Romberg J K, Tao T. Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on Pure and Applied Mathematics, 2006, 59(8): 1207-1223. DOI:10.1002/cpa.20124.
[20] Donoho D L. For most large underdetermined systems of linear equations the minimal l1 norm solution is also the sparsest solution[J]. Communications on Pure and Applied Mathematics, 2006, 59(6): 797-829. DOI:10.1002/cpa.20132.
[21] Feng X G, Milanfar P. Multiscale principal components analysis for image local orientation estimation[C]//Conference Record of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers. Pacific Grove, USA, 2002, 1: 478-482.
[22] Li X, Hu Y, Gao X, et al. A multi-frame image super-resolution method[J]. Signal Processing, 2010, 90(2): 405-414. DOI:10.1016/j.sigpro.2009.05.028.
[23] Daubechies I, Defrise M, De Mol C. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[J]. Communications on Pure and Applied Mathematics, 2004, 57(11): 1413-1457. DOI:10.1002/cpa.20042.
[24] Wang Z, Bovik A C, Sheikh H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.