|Table of Contents|

[1] Yang Zhen, Fei Shumin, Wang Fang, et al. An adaptive switching control approachfor trajectory tracking of robotic manipulators [J]. Journal of Southeast University (English Edition), 2016, 32 (2): 183-186. [doi:10.3969/j.issn.1003-7985.2016.02.009]
Copy

An adaptive switching control approachfor trajectory tracking of robotic manipulators()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
32
Issue:
2016 2
Page:
183-186
Research Field:
Automation
Publishing date:
2016-06-20

Info

Title:
An adaptive switching control approachfor trajectory tracking of robotic manipulators
Author(s):
Yang Zhen1 2 Fei Shumin1 Wang Fang2 Bao Anping1 Liu Guquan1
1Key Laboratory of Measurement and Control of Complex Systems of Engineering of Ministry of Education, Southeast University, Nanjing 210096, China
2School of Information Science and Engineering, Zaozhuang University, Zaozhuang 277100, China
Keywords:
adaptive control switch control robotic manipulator trajectory tracking
PACS:
TP241
DOI:
10.3969/j.issn.1003-7985.2016.02.009
Abstract:
In order to design a suitable controller which can achieve accurate trajectory tracking and a good control performance, and guarantee the stability and robustness of a robot system due to external disturbances error and internal parameter variations, an adaptive switching control strategy is proposed. The proposed scheme is designed under the condition of bounded distances and consists of an adaptive switching law and a PD controller. Based on the Lyapunov stability theory, it is proved that the proposed scheme can guarantee the tracking performance of the robotic manipulator and is adapted to varying unknown loads. Simulations are carried out on a two-link robotic manipulator, which illustrate the feasibility and validity of the proposed control scheme and the robustness for variational payloads.

References:

[1] Van Cuong P, Wang Y N. Adaptive trajectory tracking neural network control with robust compensator for robot manipulators [J]. Neural Computing and Applications, 2016, 27(2): 525-536. DOI:10.1007/s00521-015-1873-4.
[2] Hernandez-Guzman V M, Santibanez V, Campa R. PID control of robot manipulators equipped with brushless DC motors [J]. Robotica, 2009, 27(2): 225-233. DOI:10.1017/s026357470800461x.
[3] Huh S H, Bien Z. Robust sliding mode-control of a robot manipulator based on variable structure-mode reference adaptive control approach [J]. IET Control Theory and Applications, 2007, 1(5): 1355-1363. DOI:10.1049/iet-cta:20060440.
[4] Craig J J, Hsu P, Sastry S. S. Adaptive control of mechanical manipulators [J]. International Journal of Robotic Research, 1987, 6(2): 16-28.
[5] Yu L, Fei S M, Sun L N, et al. An adaptive neural network switching control approach of robotic manipulators for trajectory tracking [J]. International Journal of Computer Mathematics, 2014, 91(5): 983-995. DOI:10.1080/00207160.2013.813021.
[6] Wang X, Niu R S, Chen C, et al. H switched adaptive control for a class of robot manipulators [J]. Transactions of the Institute of Measurement and Control, 2014, 36(3): 347-353. DOI:10.1177/0142331213503362.
[7] Yu L, Fei S M. Robustly stable switching neural control of robotic manipulators using average dwell-time approach [J]. Transactions of the Institute of Measurement and Control, 2014, 36(6): 789-796. DOI:10.1177/0142331213507593.
[8] Branicky M S. Multiple Lyapunov functions and other analysis tools for switched and hybrid systems [J]. IEEE Transactions on Automatic Control, 1998, 43(4): 475-482. DOI:10.1109/9.664150.
[9] Niu R S, Wang X, Zhao J, et al. Switched adaptive control for a class of robot manipulators [C]//Proceedings of the 31st Chinese Control Conference. Hefei, China, 2012: 4974-4978.
[10] Jiao X H, Li Y F, Fang Y M, et al. A method on robust adaptive control strategy of robot [J]. Technology and Application of Robot, 2002, 5(3): 40-43.(in Chinese)

Memo

Memo:
Biographies: Yang Zhen(1975—), male, graduate; Fei Shumin(corresponding author), male, doctor, professor, 101005171@seu.edu.cn.
Foundation item: The National Natural Science Foundation of China(No.61273119, 61374038, 61473079).
Citation: Yang Zhen, Fei Shumin, Wang Fang, et al. An adaptive switching control approach for trajectory tracking of robotic manipulators[J].Journal of Southeast University(English Edition), 2016, 32(2):183-186.doi:10.3969/j.issn.1003-7985.2016.02.009.
Last Update: 2016-06-20