|Table of Contents|

[1] Fu Jun, Pang Miao, Song Guangyuan, Zhang Yongqiang, et al. Analysis of plane strain bending of a strain hardening curved beambased on unified yield criterion [J]. Journal of Southeast University (English Edition), 2016, 32 (3): 339-345. [doi:10.3969/j.issn.1003-7985.2016.03.014]
Copy

Analysis of plane strain bending of a strain hardening curved beambased on unified yield criterion()
统一屈服准则下应变硬化曲梁的平面应变弯曲分析
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
32
Issue:
2016 3
Page:
339-345
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2016-09-20

Info

Title:
Analysis of plane strain bending of a strain hardening curved beambased on unified yield criterion
统一屈服准则下应变硬化曲梁的平面应变弯曲分析
Author(s):
Fu Jun1, Pang Miao2, Song Guangyuan2, Zhang Yongqiang2, Yang Bo1
1School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, China
2College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
傅军1, 庞苗2, 宋广远2, 张永强2, 杨博1
1浙江理工大学建筑工程学院, 杭州 310018; 2浙江大学建筑工程学院, 杭州 310058
Keywords:
curved beam plane strain strain hardening elastic-plastic bending unified yield criterion
曲梁 平面应变 应变硬化 弹塑性弯曲 统一屈服准则
PACS:
O343
DOI:
10.3969/j.issn.1003-7985.2016.03.014
Abstract:
The analysis of plane strain elastic-plastic bending of a linear strain hardening curved beam with a narrow rectangular cross section subjected to couples at its end is conducted based on a unified yield criterion. The solutions for the mechanical properties of plane strain bending are derived, which are adapted for various kinds of non-strength differential materials and can be degenerated to those based on the Tresca, von Mises, and twin-shear yield criteria. The dependences of the two critical bending moments, the radii of the interfaces between the elastic and plastic regions and the radial displacements of the points at the symmetrical plane on different yield criteria and Poisson’s ratios are discussed. The results show that the influences of different yield criteria and Poisson’s ratio on the two critical bending moments, the radii of the interfaces between the elastic and plastic regions and the radial displacements of the points at the symmetrical plane of the curved beam are significant. Once the value of b is obtained by experiments, the yield criterion and the corresponding solution for the materials of interest are then determined.
在统一屈服准则的基础上, 研究了两端力偶作用下具有窄矩形截面线性应变硬化曲梁的平面应变弹塑性弯曲问题.获得的平面应变弯曲解答适用于各类非强度差材料, 并可以退化到基于Tresca, von Mises和广义双剪屈服(TS)准则的解答.讨论了2个临界弯矩、弹塑性区界面的半径及对称面上点的径向位移与不同屈服准则和泊松比之间的相关性.结果表明, 不同屈服准则和泊松比对曲梁的2个临界弯矩、弹塑性区界面的半径及对称面上点的径向位移有显著的影响.当材料的参数b通过实验得到后, 便可确定对应的屈服准则及相应解答.

References:

[1] Timoshenko S P, Goodier J N. Theory of elasticity[M]. New York: McGraw-Hill, 1970.
[2] Shaffer B W, House Jr R N. The elasto-plastic stress distribution within a wide curved bar subjected to pure bending[J]. Journal of Applied Mechanics, 1955, 22: 305-310.
[3] Shaffer B W, House Jr R N. The significance of zero shear stress in the pure bending of a wide curved bar[J]. Journal of the Aeronautical Sciences, 1957, 24: 307-308.
[4] Shaffer B W, House Jr R N. Displacements in a wide curved bar subjected to pure elasto-plastic bending[J]. Journal of Applied Mechanics, 1957, 24: 447-452.
[5] Hill R. The mathematical theory of plasticity[M]. London: Oxford University Press, 1967.
[6] Dadras P, Majlessi S A. Plastic bending of working hardening materials[J]. Journal of Engineering for Industry, 1982, 104(3): 224-230. DOI:10.1115/1.3185823.
[7] Dadras P. Plane strain elastic-plastic bending of a strain-hardening curved beam[J]. International Journal of Mechanical Sciences, 2001, 43: 39-56. DOI:10.1016/s0020-7403(99)00102-2.
[8] Eraslan A N, Arslan E. A concise analytical treatment of elastic-plastic bending of a strain hardening curved beam[J]. Zeitschrift für Angewandte Mathematik und Mechanik, 2008, 88: 600-616. DOI:10.1002/zamm.200600037.
[9] Arslan E, Eraslan A N. Analytical solution to the bending of a nonlinearly hardening wide curved bar[J]. Acta Mechanica, 2010, 210(1): 71-84. DOI:10.1007/s00707-009-0195-y.
[10] Eraslan A N, Arslan E. A computational study on the nonlinear hardening curved beam problem[J]. International Journal of Pure Applied Mathematics, 2008, 43: 129-143.
[11] Yu M H, He L N. A new model and theory on yield and failure of materials under complex stress state[C]//Mechanical Behaviours of Materials VI. Oxford: Pergamon Press, 1992: 841-846.
[12] Fan S C, Yu M H, Yang S Y. On the unification of yield criteria[J]. Journal of Applied Mechanics, 2001, 68(2): 341-343. DOI:10.1115/1.1320451.
[13] Yu M H. Advance in strength theory of material and complex stress state in the 20th century[J]. Applied Mechanics Reviews, 2002, 55(3): 169-218. DOI:10.1115/1.1472455.
[14] Yu M H. Twin shear stress yield criterion[J]. International Journal of Mechanical Sciences, 1983, 25(1): 71-74. DOI:10.1016/0020-7403(83)90088-7.

Memo

Memo:
Biographies: Fu Jun(1970—), male, doctor, associate professor, fujun@zstu.edu.cn; Pang Miao(1972—), male, doctor, associate professor, pm@zju.edu.cn.
Foundation item: The Project of the Ministry of Housing and Urban-Rural Development(No.2014-K4-010).
Citation: Fu Jun, Pang Miao, Song Guangyuan, et al. Analysis of plane strain bending of a strain hardening curved beam based on unified yield criterion[J].Journal of Southeast University(English Edition), 2016, 32(3):339-345.DOI:10.3969/j.issn.1003-7985.2016.03.014.
Last Update: 2016-09-20