|Table of Contents|

[1] You Miman, Wang Shuanhong,. Monoidal Hom-Hopf algebra on Hom-twisted product [J]. Journal of Southeast University (English Edition), 2016, 32 (3): 391-394. [doi:10.3969/j.issn.1003-7985.2016.03.022]
Copy

Monoidal Hom-Hopf algebra on Hom-twisted product()
Hom-扭曲积上的monoidal Hom-Hopf代数
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
32
Issue:
2016 3
Page:
391-394
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2016-09-20

Info

Title:
Monoidal Hom-Hopf algebra on Hom-twisted product
Hom-扭曲积上的monoidal Hom-Hopf代数
Author(s):
You Miman Wang Shuanhong
Department of Mathematics, Southeast University, Nanjing 211189, China
游弥漫 王栓宏
东南大学数学系, 南京 211189
Keywords:
monoidal Hom-Hopf algebra Hom-twisted product Hom-smash coproduct
monoidal Hom-Hopf代数 Hom-扭曲积 Hom-冲余积
PACS:
O153.3
DOI:
10.3969/j.issn.1003-7985.2016.03.022
Abstract:
Let(H, α)be a monoidal Hom-bialgebra and(B, β)be a left(H, α)-Hom-comodule coalgebra. The new monoidal Hom-algebra B#×H is constructed with a Hom-twisted product Bσσ[H] and a B×H Hom-smash coproduct. Moreover, a sufficient and necessary condition for B#×H to be a monoidal Hom-bialgebra is given. In addition, let(H, α)be a Hom-σ-Hopf algebra with Hom-σ-antipode SHH, and a sufficient condition for this new monoidal Hom-bialgebra B#×H with the antipode S defined by S(b×h)=(1BSHH(α-1(b(-1))))·(SBB(b(0))×1HH)to be a monoidal Hom-Hopf algebra is derived.
设(H, α)是monoidal Hom-Hopf代数, (B, β)是左(H, α)-Hom-余模余代数.构造了由Hom-扭曲积BσH]和Hom-冲余积B×H构成的新monoidal Hom-代数B#×H.并给出了B#×H成为monoidal Hom-双代数的充分必要条件B#×H.此外, 设(H, α)是带有Hom-σ-反对极SH的Hom-σ-Hopf 代数, 并找到此monoidal Hom-双代数B#×H带有定义为S(b×h)=(1BSH(α-1(b(-1))))(SB(b(0))×1HH)的反对极S成为monoidal Hom-Hopf 代数的充分条件.

References:

[1] Caenepeel S, Goyvaerts I. Monoidal hom-Hopf algebra [J]. Communications in Algebra, 2011, 39(6): 2216-2240. DOI:10.1080/00927872.2010.490800.
[2] Chen Yuanyuan, Wang Zhongwei, Zhang Liangyun. Integrals for monoidal Hom-Hopf algebras and their applications [J]. Journal of Mathematical Physics, 2013, 54(7): 073515-1-073515-22. DOI:10.1063/1.4813447.
[3] Liu Ling, Shen Bingliang. Radford’s biproducets and Yetter-Drinfeld modules for monoidal Hom-Hopf algebras [J]. Journal of Mathematical Physics, 2014, 55(3):031701-1-031701-16. DOI:10.1063/1.4866760.
[4] Lu Daowei, Wang Shuanhong. Crossed product and Galois extension of monoidal Hom-Hopf algebras [EB/OL].(2014-05-29). http://arxiv.org/abs/1405.7528.
[5] Blattner R, Cohen M, Montgomery S. Crossed product and inner actions of Hopf algebras [J]. Transactions of the American Mathematical Society, 1986, 298(2): 671-711. DOI:10.2307/2000643.
[6] Yukio D, Mitsuhiro T. Cleft comodule algebras for a bialgebra [J]. Communications in Algebra, 1986, 14(5): 801-817. DOI:10.1080/00927878608823337.
[7] Montgomery S. Hopf algebras and their actions on rings [M]. Providence, RI, USA:American Mathematical Society, 1992.
[8] Sweedler M E. Hopf algebras [M]. New York:WA Benjamin Inc, 1969.

Memo

Memo:
Biographies: You Miman(1984—), female, doctor; Wang Shuanhong(corresponding author), male, doctor, professor, shuanhwang@seu.edu.cn.
Foundation items: The National Natural Science Foundation of China(No.11371088, 10871042, 11571173), the Fundamental Research Funds for the Central Universities(No.KYLX15_0105).
Citation: You Miman, Wang Shuanhong.Monoidal Hom-Hopf algebra on Hom-twisted product[J].Journal of Southeast University(English Edition), 2016, 32(3):391-394.DOI:10.3969/j.issn.1003-7985.2016.03.022.
Last Update: 2016-09-20