[1] Haque F, Li J H, Wu H C, et al. Solid-state and biological nanopore for real-time sensing of single chemical and sequencing of DNA[J]. Nano Today, 2013, 8(1): 56-74.
[2] Cracknell J A, Japrung D, Bayley H. Translocating kilobase RNA through the staphylococcal α-hemolysinnanopore[J]. Nano Letters, 2013, 13(6): 2500-2505. DOI:10.1021/nl400560r.
[3] Manrao E A, Derrington I M, Pavlenok M, et al. Nucleotide discrimination with DNA immobilized in the Mspa nanopore[J]. PLoS One, 2011, 6(10): e25723. DOI:10.1371/journal.pone.0025723.
[4] Kasianowicz J J, Brandin E, Branton D, et al. Characterization of individual polynucleotide molecules using a membrane channel[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(24): 13770-13773. DOI:10.1073/pnas.93.24.13770.
[5] Akeson M, Branton D, Kasianowicz J J, et al. Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules[J]. Biophysical Journal, 1999, 77(6): 3227-3233. DOI:10.1016/S0006-3495(99)77153-5.
[6] Meller A, Nivon L, Brandin E, et al. Rapid nanopore discrimination between single polynucleotide molecules[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(3): 1079-1084. DOI:10.1073/pnas.97.3.1079.
[7] Khulbe P K, Mansuripur M, Gruener R. DNA translocation through α-hemolysin nanopores with potential application to macromolecular data storage[J]. Journal of Applied Physics, 2005, 97(10): 104317. DOI:10.1063/1.1905791.
[8] Henrickson S E, Misakian M, Robertson B, et al. Driven DNA transport into an asymmetric nanometer-scale pore[J]. Physical Review Letters, 2000, 85(14): 3057-3060. DOI:10.1103/PhysRevLett.85.3057.
[9] Wang H Y, Li Y, Qin L X, et al. Single-molecule DNA detection using a novel sp1 protein nanopore[J].Chemical Communications, 2013, 49(17): 1741-1743. DOI:10.1039/c3cc38939a.
[10] Si W, Sha J J, Liu L, et al. Detecting DNA using a single graphene pore by molecular dynamics simulations[J]. Key Engineering Materials, 2012, 503:423-426. DOI:10.4028/www.scientific.net/kem.503.423.
[11] Si W, Sha J, Liu L, et al. Effect of nanopore size on poly(dT)30 translocation through silicon nitridemembrane[J]. Science China Technological Sciences, 2013, 56(10): 2398-2402. DOI:10.1007/s11431-013-5330-2.
[12] Meller A, Branton D. Single molecule measurements of DNA transport through a nanopore[J]. Electrophoresis, 2002, 23(16): 2583-2591.
[13] Gopfrich K, Kulkarni C V, Pambos O J, et al. Lipid nanobilayers to host biological nanopores for DNA translocations[J]. Langmuir, 2013, 29(1): 355-364.. DOI:10.1021/la3041506.
[14] Meller A, Nivon L, Branton D. Voltage-driven DNA translocations through a nanopore[J]. Physical Review Letters, 2001, 86(15): 3435-3438. DOI:10.1103/PhysRevLett.86.3435.
[15] Hess B, Kutzner C, van der Spoel D, et al. Gromacs 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation[J]. Journal of Chemical Theory and Computation, 2008, 4(3): 435-447. DOI:10.1021/ct700301q.
[16] van der Spoel D, Lindahl E, Hess B, et al. Gromacs: Fast, flexible, and free[J]. Journal of Computational Chemistry, 2005, 26(16): 1701-1718. DOI:10.1002/jcc.20291.
[17] Cornell W D, Cieplak P, Bayly C I, et al. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules [J]. Journal of the American Chemical Society, 1996, 118(9): 2309. DOI:10.1021/ja955032e.
[18] Darden T, York D, Pedersen L. Particle mesh Ewald: An N·log(N)method for Ewald sums in large systems[J].The Journal of Chemical Physics, 1993, 98(12): 10089-10092. DOI:10.1063/1.464397.