|Table of Contents|

[1] Liu Shuli, Liu Xinwang,. Three-way group decision making with linguistic evaluations [J]. Journal of Southeast University (English Edition), 2016, 32 (4): 520-523. [doi:10.3969/j.issn.1003-7985.2016.04.021]
Copy

Three-way group decision making with linguistic evaluations()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
32
Issue:
2016 4
Page:
520-523
Research Field:
Economy and Management
Publishing date:
2016-12-20

Info

Title:
Three-way group decision making with linguistic evaluations
Author(s):
Liu Shuli1 2 Liu Xinwang1
1School of Economics and Management, Southeast University, Nanjing 211189, China
2School of Mathematics and Physics, Anhui Polytechnic University, Wuhu 241000, China
Keywords:
linguistic evaluation uncertainty triangular fuzzy sets three-way group decision making recommendation
PACS:
C934
DOI:
10.3969/j.issn.1003-7985.2016.04.021
Abstract:
Based on linguistic evaluations, a linguistic three-way decision method is proposed. First, the alternatives are rated in linguistic forms and divided into acceptance, rejection and uncertainty regions. Secondly, the linguistic three-way group decision steps are provided. Specifically, the experts determine the lower bound and upper bound of the uncertainty region, respectively. When the evaluation is superior to the upper bound, the corresponding alternative is put into the acceptance region directly. Similarly, when the evaluation is inferior to the lower bound, the corresponding alternative is put into the rejection region directly, and the remaining alternatives are put into the uncertain region. Moreover, the objects in the uncertainty region are especially discussed. The linguistic terms are transformed into fuzzy numbers and then aggregated. Finally, a recommendation example is provided to illustrate the practicality and validity of the proposed method.

References:

[1] Li T R, Chen H M, Yao J A, et al. A multifaceted analysis of probabilistic three-way decisions [J]. Fundamenta Informaticae, 2014, 132(3): 291-313. DOI:10.3233/FI-2014-1045.
[2] Deng X F, Yao Y Y. Decision-theoretic three-way approximations of fuzzy sets [J]. Information Sciences, 2014, 279: 702-715. DOI:10.1016/j.ins.2014.04.022.
[3] Yao Y Y. Three-way decisions with probabilistic rough sets [J]. Information Sciences, 2010, 180(3): 341-353. DOI:10.1016/j.ins.2009.09.021.
[4] Hu B Q. Three-way decisions space and three-way decisions [J]. Information Sciences, 2014, 281: 21-52. DOI:10.1016/j.ins.2014.05.015.
[5] Xu Z S. Linguistic decision making: Theory and methods [M]. Berlin: Springer, 2012.
[6] Ma J, Ruan D, Xu Y, et al. A fuzzy-set approach to treat determinacy and consistency of linguistic terms in multi-criteria decision making [J]. International Journal of Approximate Reasoning, 2007, 44(2): 165-181.
[7] Herrera F, Herrera-Viedma E, Martinez L. A fuzzy linguistic methodology to deal with unbalanced linguistic term sets [J]. IEEE Transactions on Fuzzy Systems, 2008, 16(2): 354-370. DOI:10.1109/tfuzz.2007.896353.
[8] Massanet S, Riera J V, Torrens J, et al. A new linguistic computational model based on discrete fuzzy numbers for computing with words [J]. Information Sciences, 2014, 258: 277-290. DOI:10.1016/j.ins.2013.06.055.
[9] Liang D C, Liu D. Three-way decisions based on decision-theoretic rough sets under linguistic assessment with the aid of group decision making [J]. Applied Soft Computing, 2015, 29: 256-269. DOI:10.1016/j.asoc.2015.01.008.
[10] Mendel J M, Wu D R. Peceptual computing: Aiding people in making subjective judgments [M]. New Jersey: John Wiley and Sons, Inc., 2010.
[11] Yang, X J, Yan L L, Peng H, et al. Encoding words into Cloud models from interval-valued data via fuzzy statistics and membership function fitting [J]. Knowledge-Based Systems, 2014, 55: 114-124. DOI:10.1016/j.knosys.2013.10.014.
[12] Meng F Y, Chen X H, Zhang Q. Multi-attribute decision analysis under a linguistic hesitant fuzzy environment [J]. Information Sciences, 2014, 267: 287-305. DOI:10.1016/j.ins.2014.02.012.
[13] Kacprzyk J, Zadrozny S. Computing with words is an implementable paradigm: Fuzzy queries, linguistic data summaries, and natural-language generation [J]. IEEE Transactions on Fuzzy Systems, 2010, 18(3): 461-472. DOI:10.1109/tfuzz.2010.2040480.
[14] Cao Y Z, Chen G Q. A fuzzy Petri-nets model for computing with words [J]. IEEE Transactions on Fuzzy Systems, 2010, 18(3): 486-499. DOI:10.1109/tfuzz.2009.2035816.
[15] Wang J H, Hao J Y. A new version of 2-tuple fuzzy linguistic, representation model for computing with words [J]. IEEE Transactions on Fuzzy Systems, 2006, 14(3): 435-445.
[16] Liu F, Mendel J M. Encoding words into interval type-2 fuzzy sets using an interval approach [J]. IEEE Transactions on Fuzzy Systems, 2008, 16(6): 1503-1521.
[17] Qin J D, Liu X W. Multi-attribute group decision making using combined ranking value under interval type-2 fuzzy environment [J]. Information Sciences, 2015, 297: 293-315. DOI:10.1016/j.ins.2014.11.022.
[18] Qin J D, Liu X W, Pedrycz W. An extended VIKOR method based on prospect theory for multiple attribute decision making under interval type-2 fuzzy environment [J]. Knowledge-Based Systems, 2015, 86: 116-130. DOI:10.1016/j.knosys.2015.05.025.

Memo

Memo:
Biographies: Liu Shuli(1980—), male, graduate; Liu Xinwang(corresponding author), male, doctor, professor, xwliu@seu.edu.cn.
Foundation items: The National Natural Science Foundation of China(No.71171048, 71371049), the Scientific Innovation Research of College Graduates in Jiangsu Province(No.KYLX15-0190), the Scientific Research Foundation of Graduate School of Southeast University(No.YBJJ1567).
Citation: Liu Shuli, Liu Xinwang.Three-way group decision making with linguistic evaluations[J].Journal of Southeast University(English Edition), 2016, 32(4):520-523.DOI:10.3969/j.issn.1003-7985.2016.04.021.
Last Update: 2016-12-20