[1] van Daele A. Multiplier Hopf algebras [J]. Trans Amer Math Soc, 1994, 342(2):917-932. DOI:10.1090/s0002-9947-1994-1220906-5.
[2] van Daele A. An algebraic framework for group duality [J]. Advances in Mathematics, 1998, 140(2):323-366. DOI:10.1006/aima.1998.1775.
[3] Voigt C. Bornological quantum groups [J]. Pacific Journal of Mathematics, 2008, 235(1):93-135. DOI:10.2140/pjm.2008.235.93.
[4] van Daele A, Wang S H. Pontryagin duality for bornological quantum hypergroups [J]. Manuscripta Mathematica, 2009, 131(1):247-263. DOI:10.1007/s00229-009-0318-8.
[5] Meyer R. Smooth group representations on bornological vector spaces [J]. Bull Sci Math, 2004, 128(2):127-166. DOI:10.1016/j.bulsci.2003.12.002.
[6] Voigt C. Equivariant periodic cyclic homology [J]. Journal of the Institute of Mathematics of Jussieu, 2007, 6(4): 689-763. DOI:10.1017/s1474748007000102.
[7] de Commer K. Galois objects for algebraic quantum groups[J]. Journal of Algebra, 2009, 321(6):1746-1785. DOI:10.1016/j.jalgebra.2008.11.039.
[8] Drabant B, van Daele A, Zhang Y H. Actions of multiplier Hopf algebras [J]. Comm Algebra, 1999, 27(9):4117-4172. DOI:10.1080/00927879908826688.