[1] Ibrahim R A. Overview of structural life assessment and reliability. Part Ⅰ: Basic ingredients of fracture mechanics[J]. Journal of Ship Production and Design, 2015, 31(1): 1-42. DOI:10.5957/jspd.31.1.130025-1.
[2] Stasevic M, Maksimovic S, Geric K, et al. Fatigue crack propagation models: Numerical and experimental comparisons[J]. Technics Technologies Education Management, 2012, 7(2): 801-810.
[3] Carter B J, Schenck E C, Wawrzynek P A, et al. Three-dimensional simulation of fretting crack nucleation and growth[J]. Engineering Fracture Mechanics, 2012, 96: 447-460. DOI:10.1016/j.engfracmech.2012.08.015.
[4] Zhang J K, Cheng X Q, Li Z N. Total fatigue life prediction for Ti-alloys airframe structure based on durability and damage-tolerant design concept[J]. Materials & Design, 2010, 31(9): 4329-4335. DOI:10.1016/j.matdes.2010.03.052.
[5] Wang Y Y, Yao W X. Evaluation and comparison of several multiaxial fatigue criteria [J]. International Journal of Fatigue, 2004, 26(1): 17-25. DOI:10.1016/s0142-1123(03)00110-5.
[6] Esmaeili F, Chakherlou T N, Zehsaz M. Prediction of fatigue life in aircraft double lap bolted joints using several multiaxial fatigue criteria [J]. Materials & Design, 2014, 59: 430-438. DOI:10.1016/j.matdes.2014.03.019.
[7] Lu Z, Xiang Y, Liu Y. Crack growth-based fatigue-life prediction using an equivalent initial flaw model. Part Ⅱ: Multiaxial loading [J]. International Journal of Fatigue, 2010, 32(2): 376-381. DOI:10.1016/j.ijfatigue.2009.07.011.
[8] Zhu L, Jia M P, Shi G L, et al. Estimation approach of structural fatigue life based on multiple factors correction[J]. Journal of Southeast University(Natural Science Edition), 2015, 45(3): 469-473.(in Chinese)
[9] Shi G L, Zhu L, Wang R G. The fatigue life analysis for the cage of overrunning clutch based on multiple factors correction[J]. Machine Design and Research, 2015, 31(2): 70-73, 76.(in Chinese)
[10] Cui W C. Relation between crack growth rate curve and S-N curve for metal fatigue [J]. Journal of Ship Mechanics, 2002, 6(6): 93-106.
[11] Lam T S, Topper T H, Conle F A. Derivation of crack closure and crack growth rate data from effective-strain fatigue life data for fracture mechanics fatigue life predictions[J]. International Journal of Fatigue, 1998, 20(10): 703-710. DOI:10.1016/s0142-1123(98)00023-1.
[12] Cui W C, Huang X P. A general constitutive relation for fatigue crack growth analysis of metal structures [J]. Acta Metallurgica Sinica(English Letters), 2009, 16(5): 342-354.
[13] Varvani-Farahani A, Kodric T, Ghahramani A. A method of fatigue life prediction in notched and un-notched components[J]. Journal of Materials Processing Technology, 2005, 169(1): 94-102. DOI:10.1016/j.jmatprotec.2005.01.015.
[14] Petrucci G, Zuccarello B. Fatigue life prediction under wide band random loading[J]. Fatigue & Fracture of Engineering Materials & Structures, 2004, 27(12): 1183-1195. DOI:10.1111/j.1460-2695.2004.00847.x.
[15] Zhang W, Liu Y. In situ SEM testing for crack closure investigation and virtual crack annealing model development [J]. International Journal of Fatigue, 2012, 43(5): 188-196. DOI:10.1016/j.ijfatigue.2012.04.003.
[16] Kova(ˇoverc)J, Legat A, Zajec B, et al. Detection and characterization of stainless steel SCC by the analysis of crack related acoustic emission [J]. Ultrasonics, 2015, 62: 312-322. DOI:10.1016/j.ultras.2015.06.005.
[17] Gagnon M, Tahan A, Bocher P, et al. A probabilistic model for the onset of high cycle fatigue(HCF)crack propagation: Application to hydroelectric turbine runner [J]. International Journal of Fatigue, 2013, 47: 300-307. DOI:10.1016/j.ijfatigue.2012.09.011.