|Table of Contents|

[1] Li Yejun, Huang Bin,. Reliability analysis of structure with random parametersbased on multivariate power polynomial expansion [J]. Journal of Southeast University (English Edition), 2017, 33 (1): 59-63. [doi:10.3969/j.issn.1003-7985.2017.01.010]
Copy

Reliability analysis of structure with random parametersbased on multivariate power polynomial expansion()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
33
Issue:
2017 1
Page:
59-63
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2017-03-30

Info

Title:
Reliability analysis of structure with random parametersbased on multivariate power polynomial expansion
Author(s):
Li Yejun Huang Bin
School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
Keywords:
reliability random parameters multivariable power polynomial expansion perturbation technique Galerkin projection
PACS:
O343;TU313
DOI:
10.3969/j.issn.1003-7985.2017.01.010
Abstract:
A new method for calculating the failure probability of structures with random parameters is proposed based on multivariate power polynomial expansion, in which the uncertain quantities include material properties, structural geometric characteristics and static loads. The structural response is first expressed as a multivariable power polynomial expansion, of which the coefficients are then determined by utilizing the higher-order perturbation technique and Galerkin projection scheme. Then, the final performance function of the structure is determined. Due to the explicitness of the performance function, a multifold integral of the structural failure probability can be calculated directly by the Monte Carlo simulation, which only requires a small amount of computation time. Two numerical examples are presented to illustrate the accuracy and efficiency of the proposed method. It is shown that compared with the widely used first-order reliability method(FORM)and second-order reliability method(SORM), the results of the proposed method are closer to that of the direct Monte Carlo method, and it requires much less computational time.

References:

[1] Breitung K. Asymptotic approximations for multinormal integrals[J]. Journal of Engineering Mechanics, 1984, 110(3):357-366. DOI:10.1061/(asce)0733-9399(1984)110:3(357).
[2] Cai G Q, Elishakoff I. Refined second-order reliability analysis[J]. Structural Safety, 1994, 14(4):267-276. DOI:10.1016/0167-4730(94)90015-9.
[3] Low B K, Einstein H H. Reliability analysis of roof wedges and rockbolt forces in tunnels[J]. Tunnelling and Underground Space Technology, 2013, 38:1-10. DOI:10.1016/j.tust.2013.04.006.
[4] Chan C L, Low B K. Practical second-order reliability analysis applied to foundation engineering[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2012, 36(11):1387-1409. DOI:10.1002/nag.1057.
[5] Plotnikov M Y, Shkarupa E V. Estimating the statistical error in calculating velocity and temperature components by the direct simulation Monte Carlo method[J]. Numerical Analysis & Applications, 2016, 9(3):246-256. DOI:10.1134/s199542391603006x.
[6] Guo T, Li A Q, Miao C Q. Monte Carlo numerical simulation and its application in probability analysis of long span bridges [J]. Journal of Southeast University(English Edition), 2005, 21(4): 469-473.
[7] Zhang H, Dai H, Beer M, et al. Structural reliability analysis on the basis of small samples: An interval quasi-Monte Carlo method[J]. Mechanical Systems and Signal Processing, 2013, 37(1/2):137-151. DOI:10.1016/j.ymssp.2012.03.001.
[8] Echard B, Gayton N, Lemaire M, et al. A combined importance sampling and Kriging reliability method for small failure probabilities with time-demanding numerical models[J]. Reliability Engineering & System Safety, 2013, 111(2):232-240. DOI:10.1016/j.ress.2012.10.008.
[9] Kuznetsov N Y, Homyak O N. Evaluation of the probability of functional failure of a redundant system by importance sampling method[J]. Cybernetics and Systems Analysis, 2014, 50(4):538-547. DOI:10.1007/s10559-014-9642-4.
[10] Dubourg V, Sudret B. Meta-model-based importance sampling for reliability sensitivity analysis[J]. Structural Safety, 2014, 49(10):27-36. DOI:10.1016/j.strusafe.2013.08.010.
[11] Wang X Y, Cen S, Li C F, et al. A priori, error estimation for the stochastic perturbation method[J]. Computer Methods in Applied Mechanics and Engineering, 2015, 286(3):1-21. DOI:10.1016/j.cma.2014.11.044.
[12] Huang B, Li Q S, Shi W H, et al. Eigenvalues of structures with uncertain elastic boundary restraints[J]. Applied Acoustics, 2007, 68(3):350-363. DOI:10.1016/j.apacoust.2006.01.012.
[13] Beddek K, Clenet S, Moreau O, et al. Spectral stochastic finite element method for solving 3D stochastic eddy current problems[J]. International Journal of Applied Electromagnetics & Mechanics, 2012, 39(1):753-760.
[14] Ghosh D. Probabilistic interpretation of conjugate gradient iterations in spectral stochastic finite element method[J]. AIAA Journal, 2014, 52(6):1313-1316. DOI:10.2514/1.j052769.
[15] Nair P B, Keane A J. Stochastic reduced basis methods[J]. AIAA Journal, 2012, 40(8):1653-1664. DOI:10.2514/3.15243.
[16] Sachdeva S K, Nair P B, Keane A J. Comparative study of projection schemes for stochastic finite element analysis[J]. Computer Methods in Applied Mechanics & Engineering, 2006, 195(19/20/21/22):2371-2392. DOI:10.1016/j.cma.2005.05.010.
[17] Huang B, Li Q S, Tuan A Y, et al. Recursive approach for random response analysis using non-orthogonal polynomial expansion[J]. Computational Mechanics, 2009, 44(3):309-320. DOI:10.1007/s00466-009-0375-6.
[18] Huang B, Liu W, Qu W. Recursive stochastic finite element method[C]//Proceedings of the 8th International Symposium on Structural Engineering for Young Experts. Xi’an, China, 2004: 155-160.
[19] Huang B, Zhu L P, Seresh R F. Statistical analysis of dynamic characteristics of large span cable-stayed bridge based on the recursive stochastic finite element method [C]// Proceedings of the 12th International Symposium on Structural Engineering. Wuhan, China, 2012: 440-448.

Memo

Memo:
Biographies: Li Yejun(1988—), female, graduate; Huang Bin(corresponding author), male, doctor, professor, binhuang@whut.edu.cn.
Foundation item: The National Natural Science Foundation of China(No.51378407, 51578431).
Citation: Li Yejun, Huang Bin. Reliability analysis of structure with random parameters based on multivariate power polynomial expansion[J].Journal of Southeast University(English Edition), 2017, 33(1):59-63.DOI:10.3969/j.issn.1003-7985.2017.01.010.
Last Update: 2017-03-20