|Table of Contents|

[1] Zhu Qiankun, Li Hongnan, Nan Nana, et al. Vibration control of pedestrian-bridge vertical dynamiccoupling interaction based on biodynamic model [J]. Journal of Southeast University (English Edition), 2017, 33 (2): 209-215. [doi:10.3969/j.issn.1003-7985.2017.02.014]
Copy

Vibration control of pedestrian-bridge vertical dynamiccoupling interaction based on biodynamic model()
基于生物力学模型人-桥竖向动力耦合作用及其振动控制研究
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
33
Issue:
2017 2
Page:
209-215
Research Field:
Traffic and Transportation Engineering
Publishing date:
2017-06-30

Info

Title:
Vibration control of pedestrian-bridge vertical dynamiccoupling interaction based on biodynamic model
基于生物力学模型人-桥竖向动力耦合作用及其振动控制研究
Author(s):
Zhu Qiankun1 2 Li Hongnan1 Nan Nana2 Du Yongfeng2
1 Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, China
2Western Center of Disaster Mitigation in Civil Engineering of Ministry of Education, Lanzhou University of Technology, Lanzhou 730050, China
朱前坤1 2 李宏男1 南娜娜2 杜永峰2
1大连理工大学建设工程学部, 大连 116024; 2兰州理工大学西部土木工程防灾减灾教育部工程研究中心, 兰州 730050
Keywords:
footbridge vibration serviceability biodynamic dynamic coupling system vibration control
人行桥 振动舒适度 生物力学 动力耦合系统 振动控制
PACS:
U441
DOI:
10.3969/j.issn.1003-7985.2017.02.014
Abstract:
The human-induced vertical vibration serviceability of low-frequency and lightweight footbridges is studied based on the moving mass-spring-damper(MMSD)biodynamic model, and the mass damper(TMD)with different optimal model parameters being used to control the vertical vibration. First, the MMSD biodynamic model is employed to simulate the pedestrians, and the time-varying control equations of the vertical dynamic coupling system of the pedestrian-bridge-TMD are established with the consideration of pedestrian-bridge dynamic interaction; and the equations are solved by using the Runge-Kutta-Felhberg integral method with variable step size. Secondly, the footbridge dynamic response is calculated under the model of pedestrian-structure dynamic interaction and the model of moving load when the pedestrian pace frequency is consistent with the natural frequency of footbridge. Finally, a comparative study and analysis are made on the control effects of the vertical dynamic coupling system in different optimal models of the TMD.The calculation results show that the pedestrian-bridge dynamic interaction cannot be ignored when the vertical human-induced vibration serviceability of low-frequency and light-weight footbridge is evaluated.The TMD can effectively reduce the vibration under the resonance of pedestrian-bridge, and TMD parameters are recommended for the determination by the Warburton optimization model.
基于移动质量-弹簧-阻尼(MMSD)生物动力学模型, 研究了低频轻质人行桥的竖向振动舒适度, 采用不同优化模型参数的调谐质量阻尼器(TMD)对其进行振动控制.首先, 采用MMSD生物力学模型模拟行人, 建立考虑人-桥动力相互作用的人-桥-TMD竖向动力耦合系统的时变控制方程, 利用变步长的Runge-Kutta-Felhberg算法对控制方程进行求解.其次, 探讨行人步频与人行桥频率一致时, 人行桥在人-结构动力相互作用模型和移动荷载模型下的动力响应.最后, 采用TMD对人行桥进行振动控制, 对比分析不同优化模型的TMD对人-桥竖向动力耦合系统的控制效果.计算结果表明:评估低频轻质人行桥竖向振动舒适度时, 人-桥竖向动力相互作用不容忽视;采用TMD能够有效地减轻人-桥共振时的人行桥振动, TMD参数建议依据Warburton优化模型确定.

References:

[1] Žcaronivanovi S, Pavi A. Quantification of dynamic excitation potential of pedestrian population crossing footbridges[J]. Shock and Vibration, 2011, 18(4): 563-577.
[2] van Nimmen K, Lombaert G, de Roeck G, et al. Vibration serviceability of footbridges: Evaluation of the current codes of practice[J]. Engineering Structures, 2014, 59: 448-461. DOI:10.1016/j.engstruct.2013.11.006.
[3] Qin J W, Law S S, Yang Q S, et al. Finite element analysis of pedestrian-bridge dynamic interaction[J]. Journal of Applied Mechanics, 2014, 81(4): 041001. DOI:10.1115/1.4024991.
[4] Dang H V, Živanovi S. Modelling pedestrian interaction with perceptibly vibrating footbridges[J]. FME Transactions, 2013, 41(4): 271-278.
[5] Kerr S C, Bishop N W M. Human induced loading on flexible staircases[J]. Engineering Structures, 2001, 23(1): 37-45. DOI:10.1016/s0141-0296(00)00020-1.
[6] da Silva F T, Brito H M B F, Pimentel R L. Modeling of crowd load in vertical direction using biodynamic model for pedestrians crossing footbridges[J]. Canadian Journal of Civil Engineering, 2013, 40(12): 1196-1204. DOI:10.1139/cjce-2011-0587.
[7] Shahabpoor E, Pavic A, Racic V. Identification of mass-spring-damper model of walking humans[J].Structures, 2015, 5:233-246.
[8] Archbold P, Keogh J, Caprani C C, et al. A parametric study of pedestrian vertical force models for dynamic analysis of footbridges[C/OL]// EVACES Conference. 2011:1-8. http://arrow.dit.ie/engschcivcon/39/.
[9] Macdonald J H G. Lateral excitation of bridges by balancing pedestrians[J]. Proceedings of the Royal Society of A: Mathematical, Physical and Engineering Sciences, 2008, 465(2104):1055-1073. DOI: 10.1098/rspa.2008.0367.
[10] Qin J W, Law S S, Yang Q S, et al. Pedestrian-bridge dynamic interaction, including human participation[J]. Journal of Sound and Vibration, 2013, 332(4): 1107-1124. DOI:10.1016/j.jsv.2012.09.021.
[11] Silva F T, Pimentel R L. Biodynamic walking model for vibration serviceability of footbridges in vertical direction[C]//Proceedings of the 8th International Conference on Structural Dynamics. Leuven, Belgium, 2011: 1090-1096.
[12] Živanovi S. Modelling human actions on lightweight structures: Experimental and numerical developments[C/OL]//MATEC Web of Conferences. 2015:01005-1-01005-13. http://www.matec-conferences.org.
[13] Pfeil M, Amador N, Pimentel R, et al. Analytic-numerical model for walking person-footbridge structure interaction[C]//Proceedings of the 9th International Conference on Structural Dynamics. Porto, Portugal, 2014: 1079-1086.
[14] Li X W, He B, Shi W X. Application of TMD seismic vibration control system in the bridge structures [J]. China Civil Engineering Journal, 2013, 46(S1): 245-250.(in Chinese)
[15] van Nimmen K, Verbeke P, Lombaert G, et al. Numerical and experimental evaluation of the dynamic performance of a footbridge with tuned mass dampers[J]. Journal of Bridge Engineering, 2016, 21(8): C4016001. DOI:10.1061/(asce)be.1943-5592.0000815.
[16] Den Hartog J P. Mechanical vibrations[M]. New York: Dover Publications, Inc., 1934.
[17] Toso M A, Gomes H M, da Silva F T, et al. Experimentally fitted biodynamic models for pedestrian-structure interaction in walking situations[J]. Mechanical Systems and Signal Processing, 2016, 72: 590-606. DOI:10.1016/j.ymssp.2015.10.029.
[18] Warburton G B. Optimum absorber parameters for various combinations of response and excitation parameters[J]. Earthquake Engineering and Structural Dynamics, 1982, 10(3): 381-401. DOI:10.1002/eqe.4290100304.
[19] Tsai H C, Lin G C. Optimum tuned-mass dampers for minimizing steady-state response of support-excited and damped systems[J]. Earthquake Engineering and Structural Dynamics, 1993, 22(11): 957-973. DOI:10.1002/eqe.4290221104.
[20] Zivanovic S. Probability-based estimation of vibration for pedestrian structures due to walking[D]. Sheffield, UK:Department of Civil and Structural Engineering, The University of Sheffield, 2006.
[21] Gulvanessian H, Calgaro J A, Holický M. Designer’s guide to EN 1990. Eurocode: Basis of structural design[M]. London: Thomas Telford Publishing, 2002.

Memo

Memo:
Biography: Zhu Qiankun(1981—), male, doctor, associate professor, zhuqk@lut.cn.
Foundation items: The National Natural Science Foundation of China(No.51508257, 51668042, 51578274), the Yangtze River Scholar and the Innovation Team of Ministry of Education(No.IRT13068), the Scientific Research Project of Gansu Higher Education(No.2015B-34).
Citation: Zhu Qiankun, Li Hongnan, Nan Nana, et al. Vibration control of pedestrian-bridge vertical dynamic coupling interaction based on biodynamic model[J].Journal of Southeast University(English Edition), 2017, 33(2):209-215.DOI:10.3969/j.issn.1003-7985.2017.02.014.
Last Update: 2017-06-20