|Table of Contents|

[1] Zhou Binghai, Lu Yubin,. Improved PSO for integrating dynamic cell formationand layout problems [J]. Journal of Southeast University (English Edition), 2017, 33 (4): 409-415. [doi:10.3969/j.issn.1003-7985.2017.04.004]
Copy

Improved PSO for integrating dynamic cell formationand layout problems()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
33
Issue:
2017 4
Page:
409-415
Research Field:
Mechanical Engineering
Publishing date:
2017-12-30

Info

Title:
Improved PSO for integrating dynamic cell formationand layout problems
Author(s):
Zhou Binghai Lu Yubin
School of Mechanical Engineering, Tongji University, Shanghai 201804, China
Keywords:
dynamic cellular manufacturing system cell formation and layout communication learning strategy dynamic multi-swarm particle swarm optimization algorithm
PACS:
TH165
DOI:
10.3969/j.issn.1003-7985.2017.04.004
Abstract:
To decrease the impact of shorter product life cycles, dynamic cell formation problems(CFPs)and cell layout problems(CLPs)were simultaneously optimized. First, CFPs and CLPs were formally described. Due to the changes of product demands and the limit of machine capacity, the existing layout needed to be rearranged to a high degree. Secondly, a mathematical model was established for the objective function of minimizing the total costs. Thirdly, a novel dynamic multi-swarm particle swarm optimization(DMS-PSO)algorithm based on the communication learning strategy(CLS)was developed. To avoid falling into local optimum and slow convergence, each swarm shared their optimal locations before regrouping. Finally, simulation experiments were conducted under different conditions. Numerical results indicate that the proposed algorithm has better stability and it converges faster than other existing algorithms.

References:

[1] Hearago S S. Group technology and cellular manufacturing [J]. IEEE Transactions on Systems, Man and Cybernetic, 1994, 24(2): 203-215. DOI:10.1109/21.281420.
[2] Tompkins J A, White J A, Bozer Y A, et al. Facilities planning [M]. 2nd ed. New York: John Wiley, 1996.
[3] Bhandwale A, Kesavadas T. A methodology to incorporate product mix variations in cellular manufacturing[J]. Journal of Intelligent Manufacturing, 2008, 19(1):71-85. DOI:10.1007/s10845-007-0046-4.
[4] Nouri H, Tang S H, Hang Tuah B T, et al. BASE: A bacteria foraging algorithm for cell formation with sequence data[J]. Journal of Manufacturing Systems, 2010, 29(2):102-110. DOI:10.1016/j.jmsy.2010.11.004.
[5] Ameli M S J, Arkat J. Cell formation with alternative process routings and machine reliability consideration[J]. The International Journal of Advanced Manufacturing Technology, 2008, 35(7/8):761-768. DOI:10.1007/s00170-006-0753-6.
[6] Mahdavi I, Aalaei A, Paydar M M, et al. A new mathematical model for integrating all incidence matrices in multi-dimensional cellular manufacturing system[J]. Journal of Manufacturing Systems, 2012, 31(2):214-223. DOI:10.1016/j.jmsy.2011.07.007.
[7] Kia R, Shirazi H, Javadian N, et al. A multi-objective model for designing a group layout of a dynamic cellular manufacturing system[J]. Journal of Industrial Engineering International, 2013, 9(1):1-14. DOI:10.1186/2251-712x-9-8.
[8] Tavakkoli-Moghaddam R, Aryanezhad M B, Safaei N, et al. Solving a dynamic cell formation problem using metaheuristics[J]. Applied Mathematics and Computation, 2005, 170(2):761-780. DOI:10.1016/j.amc.2004.12.021.
[9] Ossama M, Youssef A M A, Shalaby M A. A multi-period cell formation model for reconfigurable manufacturing systems [J]. Procedia CIRP, 2014, 17:130-135. DOI:10.1016/j.procir.2014.01.120.
[10] Bagheri M, Bashiri M. A hybrid genetic and imperialist competitive algorithm approach to dynamic cellular manufacturing system [J]. Proc IMechE Part B: Jounal of Engineering Manufacture, 2014, 228(3):458-470. DOI:10.1177/0954405413500662.
[11] Kia R, Baboli A, Javadian N, et al. Solving a group layout design model of a dynamic cellular manufacturing system with alternative process routings, lot splitting and flexible reconfiguration by simulated annealing[J]. Computers and Operations Research, 2012, 39(11):2642-2658. DOI:10.1016/j.cor.2012.01.012.
[12] Izadinia N, Eshghi K, Salmani M H. A robust model for multi-floor layout problem[J]. Computers and Industrial Engineering, 2014, 78:127-134. DOI:10.1016/j.cie.2014.09.023.
[13] Mahdavi I, Teymourian E, Baher N T, et al. An integrated model for solving cell formation and cell layout problem simultaneously considering new situations[J]. Journal of Manufacturing Systems, 2013, 32(4):655-663. DOI:10.1016/j.jmsy.2013.02.003.
[14] Wu X, Chu C H, Wang Y, et al. Genetic algorithms for integrating cell formation with machine layout and scheduling[J]. Computers and Industrial Engineering, 2007, 53(2):277-289. DOI:10.1016/j.cie.2007.06.021.
[15] King J R, Nakornchai V. Machine-component group formation in group technology: Review and extension [J]. International Journal of Production Research, 1982, 20(2):117-133 DOI:10.1080/00207548208947754.

Memo

Memo:
Biography: Zhou Binghai(1965—), male, doctor, professor, bhzhou@tongji.edu.cn
Foundation item: The National Natural Science Foundation of China(No.71471135).
Citation: Zhou Binghai, Lu Yubin. Improved PSO for integrating dynamic cell formation and layout problems[J].Journal of Southeast University(English Edition), 2017, 33(4):409-415.DOI:10.3969/j.issn.1003-7985.2017.04.004.
Last Update: 2017-12-20