[1] Kac V. Vertex algebras for beginners [M]. American Mathematical Society, 1998.
[2] Bakalov B, D’Andrea A, Kac V G. Theory of finite pseudoalgebras [J]. Advances in Mathematics, 2001, 162(1): 1-140. DOI:10.1006/aima.2001.1993.
[3] Boyallian C, Liberati J Y. On pseudo-bialgebras [J]. Journal of Algebra, 2012, 372: 1-34. DOI:10.1016/j.jalgebra.2012.08.009.
[4] Dorfman I. Dirac structures and integrability of nonlinear evolution equations [M]. Wiley & Sons, 1993.
[5] Gelfand I M, Dorfman I J. Hamiltonian operators and infinite-dimensional Lie algebra [J]. Functional Analysis and Its Applications, 1981, 15(3): 173-187.
[6] Xu X P. Equivalence of conformal superalgebras to Hamiltonian superoperators [J]. Algebra Colloquium, 2001, 8(1): 63-92.
[7] Sun Q. Generalization of H-pseudoalgebraic structures [J]. Journal of Mathematical Physics, 2012, 53(1): 012105. DOI:10.1063/1.3665708.
[8] Wu Z. Leibniz H-pseudoalgebras [J]. Journal of Algebra, 2015, 437: 133. DOI:10.1016/j.jalgebra.2015.04.019.
[9] Sweedler M E. Hopf algebras [M]. New York: W. A. Benjamin, 1969.
[10] Chari V, Pressley A. A guide to quantum groups[M]. Cambridge, UK: Cambridge University Press, 1995.