|Table of Contents|

[1] Fu Qian Zhu Xiaojun Liang Shuting Yang Jian Li Xiangmin Xu Qingfeng Gao Mingzhu,. Experimental study on axial compressive behaviors of prefabricatedcomposite thermal insulation walls after single-side fire exposure [J]. Journal of Southeast University (English Edition), 2018, 34 (2): 220-228. [doi:10.3969/j.issn.1003-7985.2018.02.012]
Copy

Experimental study on axial compressive behaviors of prefabricatedcomposite thermal insulation walls after single-side fire exposure()
预制复合保温墙体单面受火后轴压承载力试验研究
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
34
Issue:
2018 2
Page:
220-228
Research Field:
Civil Engineering
Publishing date:
2018-06-20

Info

Title:
Experimental study on axial compressive behaviors of prefabricatedcomposite thermal insulation walls after single-side fire exposure
预制复合保温墙体单面受火后轴压承载力试验研究
Author(s):
Fu Qian1 Zhu Xiaojun2 Liang Shuting1 Yang Jian1 Li Xiangmin3 Xu Qingfeng3 Gao Mingzhu1
1School of Civil Engineering, Southeast University, Nanjing 210096, China
2 Architects & Engineers Co., Ltd., Southeast University, Nanjing 210096, China
3Shanghai Key Laboratory of Engineering Structure Safety, Shanghai Research Institute of Building Sciences, Shanghai 200032, China
付倩1 朱筱俊2 梁书亭1 杨建1 李向民3 许清风3 高明珠1
1东南大学土木工程学院, 南京 210096; 2东南大学建筑设计研究院有限公司, 南京 210096; 3上海市建筑科学研究院上海市工程结构安全重点实验室, 上海 200032
Keywords:
prefabricated composite thermal insulation walls expandable polystyrene board fire exposure insulation layer post-fire axial compressive behavior
预制复合保温墙体 膨胀聚苯乙烯板 火灾 保温层 受火后 轴压性能
PACS:
TU317
DOI:
10.3969/j.issn.1003-7985.2018.02.012
Abstract:
The axial bearing capacity of prefabricated composite walls composed of inner and outer concrete wythes, expandable polystyrene(EPS)boards and steel sleeve connectors is investigated. An experimental study on the axial bearing capacity of four prefabricated composite walls after fire treatment is carried out. Two of the prefabricated composite walls are normal-temperature specimens, and the others are treated with fire. The damage modes and crack development are observed, and the axial bearing capacity, lateral deformation of the specimens, and the concrete and reinforcing bar strain are tested. The results show that the ultimate bearing capacity of specimens after a fire is less than that of normal-temperature specimens; when the insulation board thicknesses are 40 mm and 60 mm, the decrease amplitudes are 20.8% and 16.8%, respectively. The maximum lateral deformation of specimens after a fire is greater than that of normal-temperature specimens, and under the same level of load, the lateral deformation increases as the insulation board thickness increases. Moreover, the strain values of the concrete and reinforcing bars of specimens after a fire are greater than those of normal-temperature specimens, and the strain values increase as the thickness of insulation board increases.
为了研究内、外页钢筋混凝土墙板、EPS板及钢套筒连接件组成的预制复合保温墙体火灾后的轴压承载能力, 对4个预制复合保温墙体试件(2个常温试件及2个火后试件)进行了火灾后轴压承载力试验.观察了其破坏形态、裂缝开展情况;测试了其轴压承载力、墙体面外位移、混凝土及钢筋应变.试验结果表明:火后试件的抗压极限承载力均低于常温试件的极限承载力;保温层厚度40 mm, 降幅为20.8%, 厚度为60 mm, 降幅为16.8%;火后墙体的最大平面外位移值明显比常温墙体大, 在相同荷载作用下, 保温层厚度越大, 墙体的平面外位移越大;火后墙体的混凝土、钢筋应变总是比常温墙体的大, 保温厚度较大墙体的混凝土、钢筋应变均大于保温层厚度较小墙体的应变.

References:

[1] Mousa M A, Uddin N. Structural behavior and modeling of full-scale composite structural insulated wall panels[J]. Engineering Structures, 2012, 41:320-334.DOI:10.1016/j.engstruct.2012.03.028.
[2] Mathieson H, Fam A. Axial loading tests and simplified modeling of sandwich panels with GFRP skins and soft core at various slenderness ratios[J]. Journal of Composites for Construction, 2015, 19(2): 04014040. DOI:10.1061/(asce)cc.1943-5614.0000494.
[3] Abdolpour H, Escusa G, Sena-Cruz J M, et al. Axial performance of jointed sandwich wall panels[J]. Journal of Composites for Construction, 2017, 21(4):04017009. DOI:10.1061/(asce)cc.1943-5614.0000785.
[4] Naito C, Hoemann J, Beacraft M, et al. Performance and characterization of shear ties for use in insulated precast concrete sandwich wall panels[J]. Journal of Structural Engineering, 2010, 138(1):52-61. DOI:10.1061/(asce)st.1943-541x.0000430.
[5] Xiong J, Ghosh R, Ma L, et al. Bending behavior of lightweight sandwich-walled shells with pyramidal truss cores[J]. Composite Structures, 2014, 116: 793-804. DOI:10.1016/j.compstruct.2014.06.006.
[6] Tomlinson D, Fam A. Analytical approach to flexural response of partially composite insulated concrete sandwich walls used for cladding[J]. Engineering Structures, 2016, 122: 251-266. DOI:10.1016/j.engstruct.2016.04.059.
[7] Ricci I, Palermo M, Gasparini G, et al. Results of pseudo-static tests with cyclic horizontal load on cast in situ sandwich squat concrete walls[J]. Engineering Structures, 2013, 54: 131-149. DOI:10.1016/j.engstruct.2013.03.046.
[8] Choi I, Kim J H, You Y C. Effect of cyclic loading on composite behavior of insulated concrete sandwich wall panels with GFRP shear connectors[J]. Composites Part B: Engineering, 2016, 96:7-19. DOI:10.1016/j.compositesb.2016.04.030.
[9] Palermo M, Trombetti T. Experimentally-validated modelling of thin RC sandwich walls subjected to seismic loads[J]. Engineering Structures, 2016, 119:95-109.DOI:10.1016/j.engstruct.2016.03.070.
[10] Palermo M, Ricci I, Silvestri S, et al. Preliminary interpretation of shaking-table response of a full-scale 3-storey building composed of thin reinforced concrete sandwich walls[J]. Engineering Structures, 2014, 76:75-89. DOI:10.1016/j.engstruct.2014.06.024.
[11] Woltman G, Noel M, Fam A. Experimental and numerical investigations of thermal properties of insulated concrete sandwich panels with fiberglass shear connectors[J]. Energy and Buildings, 2017, 145: 22-31. DOI:10.1016/j.enbuild.2017.04.007.
[12] Zhang L, Bai Y, Chen W, et al. Thermal performance of modular GFRP multicellular structures assembled with fire resistant panels[J]. Composite Structures, 2017, 172: 22-33. DOI:10.1016/j.compstruct.2017.03.076.
[13] Pereira D, Gago A, Proença J, et al. Fire performance of sandwich wall assemblies[J]. Composites Part B: Engineering, 2016, 93:123-131. DOI:10.1016/j.compositesb.2016.03.001.
[14] Xiao J Z, Xie Q H, Li Z W, et al. Fire resistance and post-fire seismic behavior of high strength concrete shear walls[J]. Fire Technology, 2016, 53(1): 65-86. DOI:10.1007/s10694-016-0582-6.
[15] Xiao J Z, Li J, Jiang F. Research on the seismic behavior of HPC shear walls after fire[J]. Materials and Structures, 2004, 37(8):506-512.
[16] Go C G, Tang J R, Chi J H, et al. Fire-resistance property of reinforced lightweight aggregate concrete wall[J]. Construction and Building Materials, 2012, 30: 725-733. DOI:10.1016/j.conbuildmat.2011.12.081.
[17] Fernando P L N, Jayasinghe M T R, Jayasinghe C. Structural feasibility of expanded polystyrene(EPS)based lightweight concrete sandwich wall panels[J]. Construction and Building Materials, 2017, 139:45-51. DOI:10.1016/j.conbuildmat.2017.02.027.
[18] Peng Y Y, Qian J R, Wang Y H. Cyclic performance of precast concrete shear walls with a mortar-sleeve connection for longitudinal steel bars[J]. Materials and Structures, 2016, 49(6):2455-2469.DOI:10.1617/s11527-015-0660-0.
[19] Ghandehari M, Behnood A, Khanzadi M. Residual mechanical properties of high-strength concretes after exposure to elevated temperatures[J]. Journal of Materials in Civil Engineering, 2010, 22(1): 59-64. DOI:10.1061/(asce)0899-1561(2010)22:1(59).

Memo

Memo:
Biographies: Fu Qian(1988—), female, Ph.D. candidate; Zhu Xiaojun(corresponding author), male, doctor, professor-level senior engineer, 496380566@qq.com.
Foundation items: The National Key Research and Development Program of China(No.2016YFC0701703), the Natural Science Foundation of Higher Education Institutions of Jiangsu Province(No.2016TM045J), the Scientific Innovation Research of Graduate Students in Jiangsu Province(No.KYLX_0151).
Citation: Fu Qian, Zhu Xiaojun, Liang Shuting, et al. Experimental study on axial compressive behaviors of prefabricated composite thermal insulation walls after single-side fire exposure[J].Journal of Southeast University(English Edition), 2018, 34(2):220-228.DOI:10.3969/j.issn.1003-7985.2018.02.012.
Last Update: 2018-06-20