|Table of Contents|

[1] Duan Liping, Zhao Jincheng,. A nonlinear explicit dynamic GBT formulationfor modeling impact response of thin-walled steel members [J]. Journal of Southeast University (English Edition), 2018, 34 (2): 237-250. [doi:10.3969/j.issn.1003-7985.2018.02.014]
Copy

A nonlinear explicit dynamic GBT formulationfor modeling impact response of thin-walled steel members()
一种用于模拟薄壁钢构件冲击响应的非线性显式动力GBT模型
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
34
Issue:
2018 2
Page:
237-250
Research Field:
Civil Engineering
Publishing date:
2018-06-20

Info

Title:
A nonlinear explicit dynamic GBT formulationfor modeling impact response of thin-walled steel members
一种用于模拟薄壁钢构件冲击响应的非线性显式动力GBT模型
Author(s):
Duan Liping Zhao Jincheng
School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
段立平 赵金城
上海交通大学船舶海洋与建筑工程学院, 上海 200240
Keywords:
generalized beam theory impact loading thin-walled steel member explicit dynamic integrations strain rate strengthening effect thermal softening effect
广义梁理论 冲击加载 薄壁钢构件 显式动力积分 应变率强化效应 热软化效应
PACS:
TU313
DOI:
10.3969/j.issn.1003-7985.2018.02.014
Abstract:
A nonlinear explicit dynamic finite element formulation based on the generalized beam theory(GBT)is proposed and developed to simulate the dynamic responses of prismatic thin-walled steel members under transverse impulsive loads. Considering the rate strengthening and thermal softening effects on member impact behavior, a modified Cowper-Symonds model for constructional steels is utilized. The element displacement field is built upon the superposition of GBT cross-section deformation modes, so arbitrary deformations such as cross-section distortions, local buckling and warping shear can all be involved by the proposed model. The amplitude function of each cross-section deformation mode is approximated by the cubic non-uniform B-spline basis functions. The Kirchhoff’s thin-plate assumption is utilized in the construction of the bending related displacements. The Green-Lagrange strain tensor and the second Piola-Kirchhoff(PK2)stress tensor are employed to measure deformations and stresses at any material point, where stresses are assumed to be in plane-stress state. In order to verify the effectiveness of the proposed GBT model, three numerical cases involving impulsive loading of the thin-walled parts are given. The GBT results are compared with those of the Ls-Dyna shell finite element. It is shown that the proposed model and the shell finite element analysis has equivalent accuracy in displacement and stress. Moreover, the proposed model is much more computationally efficient and structurally clearer than the shell finite elements.
建立了一种基于广义梁理论(GBT)的非线性显式动力梁有限元模型, 该模型可用于等截面薄壁钢构件的冲击响应模拟.考虑冲击加载时的应变率强化及绝热升温引起的热软化效应, 当前模型采用了一种修正的Cowper-Symonds率相关本构模型.用GBT截面变形模态构建单元截面位移场, 因此新模型可考虑构件截面的畸变、屈曲及任意的翘曲剪切等局部效应.此外, 用三次非均匀B样条基函数拟合各个GBT截面变形模态的幅值函数.用Kirchhoff薄板假设构造弯曲相关位移场.用Green-Lagrange应变张量和PK2应力分别描述材料点的应变和应力, 假设各材料点处于平面应力状态.为了验证所提模型的有效性, 给出了3组薄壁构件的冲击分析算例, 将当前模型的结果和壳有限元(Ls-Dyna)分析结果进行了对比, 结果表明:当前模型和壳有限元模型的位移解和应力解具有等效精度, 但所提模型的计算效率更高, 并具备更好的结构明晰性.

References:

[1] Cowper G R, Symonds P S. Strain hardening and strain rate effects in the impact loading of cantilever beams [R]. Providence, USA: Brown University, 1958.
[2] Symonds P S, Mentel T J. Impulsive loading of plastic beams with axial constraints [J]. Journal of the Mechanics and Physics of Solids, 1958, 6(3):186-202. DOI:10.1016/0022-5096(58)90025-5.
[3] Bodner S R, Symonds P S. Experimental and theoretical investigation of the plastic deformation of cantilever beams subjected to impulsive loading [J]. Journal of Applied Mechanics, 1962, 29(4):719-728. DOI:10.1115/1.3640660.
[4] Humphreys J S. Plastic deformation of impulsively loaded straight clamped beams [J]. Journal of Applied Mechanics, 1965, 32(1):7-10. DOI:10.1115/1.3625788.
[5] Menkes S B, Opat H J. Broken beams—Tearing and shear failures in explosively loaded clamped beams [J]. Experimental Mechanics, 1973, 13(11):480-486. DOI:10.1007/bf02322734.
[6] Wegener R B, Martin J B. Predictions of permanent deformation of impulsively loaded simply supported square tubes steel beams [J]. International Journal of Mechanical Sciences, 1985, 27(1/2):55-69. DOI:10.1016/0020-7403(85)90066-9.
[7] Bambach M R, Jama H, Zhao X L, et al. Hollow and concrete filled steel hollow sections under transverse impact loads [J]. Engineering Structures, 2008, 30(10): 2859-2870. DOI:10.1016/j.engstruct.2008.04.003.
[8] Jama H H, Nurick G N, Bambach M R, et al. Steel square hollow sections subjected to transverse blast loads [J]. Thin-Walled Structures, 2012, 53:109-122. DOI:10.1016/j.tws.2012.01.007.
[9] Nassr A A, Razaqpur A G, Tait M J, et al. Experimental performance of steel beams under blast loading [J]. Journal of Performance of Constructed Facilities, 2011, 26(5):600-619. DOI:10.1061/(asce)cf.1943-5509.0000289.
[10] Nassr A A, Razaqpur A G, Tait M J, et al. Dynamic response of steel columns subjected to blast loading [J]. Journal of Structural Engineering, 2014, 140(7): 04014036-1-04014036-15. DOI:10.1061/(asce)st.1943-541x.0000920.
[11] Remennikov A M, Uy B. Explosive testing and modelling of square tubular steel columns for near-field detonations [J]. Journal of Constructional Steel Research, 2014, 101:290-303. DOI:10.1016/j.jcsr.2014.05.027.
[12] Davies J M, Leach P. First-order generalized beam theory [J]. Journal of Constructional Steel Research, 1994, 31(2/3):187-220. DOI:10.1016/0143-974x(94)90010-8.
[13] Davies J M, Leach P, Heinz D. Second-order generalized beam theory [J]. Journal of Constructional Steel Research, 1994, 31(2/3):221-241. DOI:10.1016/0143-974x(94)90011-6.
[14] Silvestre N, Camotim D. Nonlinear generalized beam theory for cold-formed steel members [J]. International Journal of Structural Stability and Dynamics, 2003, 3(4):461-490. DOI:10.1142/s0219455403001002.
[15] Gonçalves R, Camotim D. Generalised beam theory-based finite elements for elastoplastic thin-walled metal members [J]. Thin-Walled Structures, 2011, 49(10):1237-1245. DOI:10.1016/j.tws.2011.05.011.
[16] Gonçalves R, Camotim D. Geometrically non-linear generalized beam theory for elastoplastic thin-walled metal members [J]. Thin-Walled Structures, 2012, 51(2):121-129. DOI:10.1016/j.tws.2011.10.006.
[17] Basaglia C, Camotim D, Silvestre N. Post-buckling analysis of thin-walled steel frames using generalized beam theory(GBT)[J]. Thin-Walled Structures, 2013, 62:229-242. DOI:10.1016/j.tws.2012.07.003.
[18] Abambres M, Camotim D, Silvestre N. Physically non-linear GBT analysis of thin-walled members [J]. Computers and Structures, 2013, 129:148-165. DOI:10.1016/j.compstruc.2013.04.022.
[19] Abambres M, Camotim D, Silvestre N. GBT-based elastic-plastic post-buckling analysis of stainless steel thin-walled members [J]. Thin-Walled Structures, 2014, 83:85-102. DOI:10.1016/j.tws.2014.01.004.
[20] Rui B, Camotim D, Silvestre N. Dynamic analysis of thin-walled members using generalised beam theory(GBT)[J]. Thin-Walled Structures, 2013, 72:188-205. DOI:10.1016/j.tws.2013.07.004.
[21] Duan L P, Zhao J C, Liu S, et al. A B-splines-based GBT formulation for modeling fire behavior of restrained steel beams [J]. Journal of Constructional Steel Research, 2016, 116:65-78. DOI:10.1016/j.jcsr.2015.09.001.
[22] Johnson G R, Cook W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1):31-48. DOI:10.1016/0013-7944(85)90052-9.
[23] Rusinek A, Zaera R, Klepaczko J R. Constitutive relations in 3-D for a wide range of strain rates and temperatures—Application to mild steel [J]. International Journal of Solids and Structures, 2007, 44(17):5611-5634. DOI:10.1016/j.ijsolstr.2007.01.015.
[24] Perzyna P. Fundamental problems in viscoplasticity [J]. Advances in Applied Mechanics, 1966, 9:244-368. DOI:10.1016/s0065-2156(08)70009-7.
[25] Jama H H, Bambach M R, Nurick G N, et al. Numerical modelling of square tubular steel beams subjected to transverse blast loads [J]. Thin-Walled Structures, 2009, 47(12):1523-1534. DOI:10.1016/j.tws.2009.06.004.
[26] Standards Association of Australia. AS4100—1998 Steel structures: Section 12. Fire[S]. Sydney: Standards Australia, 1998.
[27] British Standards Institution. Eurocode 3: Design of steel structures: Part 1.2 General rules-structural fire design[S]. London: British Standards Institution, 2005.
[28] Zaera R, Fernandez-Saez J. An implicit consistent algorithm for the integration of thermoviscoplastic constitutive equations in adiabatic conditions and finite deformations [J]. International Journal of Solids and Structures, 2006, 43(6):1594-1612. DOI:10.1016/j.ijsolstr.2005.03.070.
[29] Marais S T, Tait R B, Cloete T J, et al. Material testing at high strain rate using the split-Hopkinson pressure bar [J]. Latin American Journal of Solids and Structures, 2004, 1:319-339.
[30] Gonçalves R, Ritto-Correa M, Camotim D. A new approach to the calculation of cross-section deformation modes in the framework of generalized beam theory [J]. Computational Mechanics, 2010, 46(5):759-781. DOI:10.1007/s00466-010-0512-2.
[31] Silvestre N, Camotim D, Silva N F. Generalized beam theory revisited: From the kinematical assumption to the deformation mode determination [J]. International Journal of Structural Stability and Dynamics, 2011, 11(5):969-997. DOI:10.1142/S0219455411004427.
[32] Cox M G. The numerical evaluation of B-splines [J]. IMA Journal of applied Mathematics, 1972, 10(2):134-149. DOI:10.1093/imamat/10.2.134.
[33] de Boor C. On calculating with B-splines [J]. Journal of Approximation Theory, 1972, 6(1):50-62. DOI:10.1016/0021-9045(72)90080-9.
[34] Hughes T J R, Cohen M, Haroun M. Reduced and selective integration techniques in the finite element analysis of plates [J]. Nuclear Engineering and Design, 1978, 46(1):203-222. DOI:10.1016/0029-5493(78)90184-X.
[35] Silvestre N, Camotim D. Local-plate and distortional post-buckling behavior of cold-formed steel lipped channel columns with intermediate stiffeners [J]. Journal of Structural Engineering, 2006, 132(4):529-540. DOI:10.1061/(ASCE)0733-9445(2006)132:4(529).
[36] Wegener R B, Martin J B. Predictions of permanent deformation of impulsively loaded simply supported square tubes steel beams [J]. International Journal of Mechanical Sciences, 1985, 27(1/2):55-69. DOI:10.1016/0020-7403(85)90066-9.
[37] Abambres M, Camotim D, Silvestre N, et al. GBT-based structural analysis of elastic-plastic thin-walled members [J]. Computers and Structures, 2014, 136:1-23. DOI:10.1016/j.compstruc.2014.01.001.
[38] Dujc J, Brank B, Ibrahimbegovic A. Multi-scale computational model for failure analysis of metal frames that includes softening and local buckling [J]. Computer Method in Applied Mechanics and Engineering, 2010, 199(21/22):1371-1385. DOI:10.1016/j.cma.2009.09.003.
[39] Duan L P. A generalized beam theory(GBT)based beam finite element model and its application to fire-resistance and blast-resistance analyses of steel structures [D]. Shanghai: School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, 2016.(in Chinese)

Memo

Memo:
Biographies: Duan Liping(1984— ), male, doctor; Zhao Jincheng(corresponding author), male, doctor, professor, jczhao@sjtu.edu.cn.
Foundation items: The National Natural Science Foundation of China(No.51078229), the Specialized Research Fund for the Doctoral Program of Higher Education(No.20100073110008).
Citation: Duan Liping, Zhao Jincheng.A nonlinear explicit dynamic GBT formulation for modeling impact response of thin-walled steel members[J].Journal of Southeast University(English Edition), 2018, 34(2):237-250.DOI:10.3969/j.issn.1003-7985.2018.02.014.
Last Update: 2018-06-20