[1] Cowper G R, Symonds P S. Strain hardening and strain rate effects in the impact loading of cantilever beams [R]. Providence, USA: Brown University, 1958.
[2] Symonds P S, Mentel T J. Impulsive loading of plastic beams with axial constraints [J]. Journal of the Mechanics and Physics of Solids, 1958, 6(3):186-202. DOI:10.1016/0022-5096(58)90025-5.
[3] Bodner S R, Symonds P S. Experimental and theoretical investigation of the plastic deformation of cantilever beams subjected to impulsive loading [J]. Journal of Applied Mechanics, 1962, 29(4):719-728. DOI:10.1115/1.3640660.
[4] Humphreys J S. Plastic deformation of impulsively loaded straight clamped beams [J]. Journal of Applied Mechanics, 1965, 32(1):7-10. DOI:10.1115/1.3625788.
[5] Menkes S B, Opat H J. Broken beams—Tearing and shear failures in explosively loaded clamped beams [J]. Experimental Mechanics, 1973, 13(11):480-486. DOI:10.1007/bf02322734.
[6] Wegener R B, Martin J B. Predictions of permanent deformation of impulsively loaded simply supported square tubes steel beams [J]. International Journal of Mechanical Sciences, 1985, 27(1/2):55-69. DOI:10.1016/0020-7403(85)90066-9.
[7] Bambach M R, Jama H, Zhao X L, et al. Hollow and concrete filled steel hollow sections under transverse impact loads [J]. Engineering Structures, 2008, 30(10): 2859-2870. DOI:10.1016/j.engstruct.2008.04.003.
[8] Jama H H, Nurick G N, Bambach M R, et al. Steel square hollow sections subjected to transverse blast loads [J]. Thin-Walled Structures, 2012, 53:109-122. DOI:10.1016/j.tws.2012.01.007.
[9] Nassr A A, Razaqpur A G, Tait M J, et al. Experimental performance of steel beams under blast loading [J]. Journal of Performance of Constructed Facilities, 2011, 26(5):600-619. DOI:10.1061/(asce)cf.1943-5509.0000289.
[10] Nassr A A, Razaqpur A G, Tait M J, et al. Dynamic response of steel columns subjected to blast loading [J]. Journal of Structural Engineering, 2014, 140(7): 04014036-1-04014036-15. DOI:10.1061/(asce)st.1943-541x.0000920.
[11] Remennikov A M, Uy B. Explosive testing and modelling of square tubular steel columns for near-field detonations [J]. Journal of Constructional Steel Research, 2014, 101:290-303. DOI:10.1016/j.jcsr.2014.05.027.
[12] Davies J M, Leach P. First-order generalized beam theory [J]. Journal of Constructional Steel Research, 1994, 31(2/3):187-220. DOI:10.1016/0143-974x(94)90010-8.
[13] Davies J M, Leach P, Heinz D. Second-order generalized beam theory [J]. Journal of Constructional Steel Research, 1994, 31(2/3):221-241. DOI:10.1016/0143-974x(94)90011-6.
[14] Silvestre N, Camotim D. Nonlinear generalized beam theory for cold-formed steel members [J]. International Journal of Structural Stability and Dynamics, 2003, 3(4):461-490. DOI:10.1142/s0219455403001002.
[15] Gonçalves R, Camotim D. Generalised beam theory-based finite elements for elastoplastic thin-walled metal members [J]. Thin-Walled Structures, 2011, 49(10):1237-1245. DOI:10.1016/j.tws.2011.05.011.
[16] Gonçalves R, Camotim D. Geometrically non-linear generalized beam theory for elastoplastic thin-walled metal members [J]. Thin-Walled Structures, 2012, 51(2):121-129. DOI:10.1016/j.tws.2011.10.006.
[17] Basaglia C, Camotim D, Silvestre N. Post-buckling analysis of thin-walled steel frames using generalized beam theory(GBT)[J]. Thin-Walled Structures, 2013, 62:229-242. DOI:10.1016/j.tws.2012.07.003.
[18] Abambres M, Camotim D, Silvestre N. Physically non-linear GBT analysis of thin-walled members [J]. Computers and Structures, 2013, 129:148-165. DOI:10.1016/j.compstruc.2013.04.022.
[19] Abambres M, Camotim D, Silvestre N. GBT-based elastic-plastic post-buckling analysis of stainless steel thin-walled members [J]. Thin-Walled Structures, 2014, 83:85-102. DOI:10.1016/j.tws.2014.01.004.
[20] Rui B, Camotim D, Silvestre N. Dynamic analysis of thin-walled members using generalised beam theory(GBT)[J]. Thin-Walled Structures, 2013, 72:188-205. DOI:10.1016/j.tws.2013.07.004.
[21] Duan L P, Zhao J C, Liu S, et al. A B-splines-based GBT formulation for modeling fire behavior of restrained steel beams [J]. Journal of Constructional Steel Research, 2016, 116:65-78. DOI:10.1016/j.jcsr.2015.09.001.
[22] Johnson G R, Cook W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1):31-48. DOI:10.1016/0013-7944(85)90052-9.
[23] Rusinek A, Zaera R, Klepaczko J R. Constitutive relations in 3-D for a wide range of strain rates and temperatures—Application to mild steel [J]. International Journal of Solids and Structures, 2007, 44(17):5611-5634. DOI:10.1016/j.ijsolstr.2007.01.015.
[24] Perzyna P. Fundamental problems in viscoplasticity [J]. Advances in Applied Mechanics, 1966, 9:244-368. DOI:10.1016/s0065-2156(08)70009-7.
[25] Jama H H, Bambach M R, Nurick G N, et al. Numerical modelling of square tubular steel beams subjected to transverse blast loads [J]. Thin-Walled Structures, 2009, 47(12):1523-1534. DOI:10.1016/j.tws.2009.06.004.
[26] Standards Association of Australia. AS4100—1998 Steel structures: Section 12. Fire[S]. Sydney: Standards Australia, 1998.
[27] British Standards Institution. Eurocode 3: Design of steel structures: Part 1.2 General rules-structural fire design[S]. London: British Standards Institution, 2005.
[28] Zaera R, Fernandez-Saez J. An implicit consistent algorithm for the integration of thermoviscoplastic constitutive equations in adiabatic conditions and finite deformations [J]. International Journal of Solids and Structures, 2006, 43(6):1594-1612. DOI:10.1016/j.ijsolstr.2005.03.070.
[29] Marais S T, Tait R B, Cloete T J, et al. Material testing at high strain rate using the split-Hopkinson pressure bar [J]. Latin American Journal of Solids and Structures, 2004, 1:319-339.
[30] Gonçalves R, Ritto-Correa M, Camotim D. A new approach to the calculation of cross-section deformation modes in the framework of generalized beam theory [J]. Computational Mechanics, 2010, 46(5):759-781. DOI:10.1007/s00466-010-0512-2.
[31] Silvestre N, Camotim D, Silva N F. Generalized beam theory revisited: From the kinematical assumption to the deformation mode determination [J]. International Journal of Structural Stability and Dynamics, 2011, 11(5):969-997. DOI:10.1142/S0219455411004427.
[32] Cox M G. The numerical evaluation of B-splines [J]. IMA Journal of applied Mathematics, 1972, 10(2):134-149. DOI:10.1093/imamat/10.2.134.
[33] de Boor C. On calculating with B-splines [J]. Journal of Approximation Theory, 1972, 6(1):50-62. DOI:10.1016/0021-9045(72)90080-9.
[34] Hughes T J R, Cohen M, Haroun M. Reduced and selective integration techniques in the finite element analysis of plates [J]. Nuclear Engineering and Design, 1978, 46(1):203-222. DOI:10.1016/0029-5493(78)90184-X.
[35] Silvestre N, Camotim D. Local-plate and distortional post-buckling behavior of cold-formed steel lipped channel columns with intermediate stiffeners [J]. Journal of Structural Engineering, 2006, 132(4):529-540. DOI:10.1061/(ASCE)0733-9445(2006)132:4(529).
[36] Wegener R B, Martin J B. Predictions of permanent deformation of impulsively loaded simply supported square tubes steel beams [J]. International Journal of Mechanical Sciences, 1985, 27(1/2):55-69. DOI:10.1016/0020-7403(85)90066-9.
[37] Abambres M, Camotim D, Silvestre N, et al. GBT-based structural analysis of elastic-plastic thin-walled members [J]. Computers and Structures, 2014, 136:1-23. DOI:10.1016/j.compstruc.2014.01.001.
[38] Dujc J, Brank B, Ibrahimbegovic A. Multi-scale computational model for failure analysis of metal frames that includes softening and local buckling [J]. Computer Method in Applied Mechanics and Engineering, 2010, 199(21/22):1371-1385. DOI:10.1016/j.cma.2009.09.003.
[39] Duan L P. A generalized beam theory(GBT)based beam finite element model and its application to fire-resistance and blast-resistance analyses of steel structures [D]. Shanghai: School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, 2016.(in Chinese)