[1] Khan A U R, Othman M, Madani S A, et al. A survey of mobile cloud computing application models[J]. IEEE Communications Surveys & Tutorials, 2014, 16(1): 393-413.DOI:10.1109/surv.2013.062613.00160.
[2] Barbarossa S, Sardellitti S, Di Lorenzo P. Communicating while computing: Distributed mobile cloud computing over 5G heterogeneous networks[J]. IEEE Signal Processing Magazine, 2014, 31(6):45-55.DOI:10.1109/msp.2014.2334709.
[3] Niyato D, Wang P, Hossain E, et al. Game theoretic modeling of cooperation among service providers in mobile cloud computing environments [C]// 2012 IEEE Wireless Communications and Networking Conference. Shanghai, China, 2012:3128-3133. DOI: 10.1109/WCNC.2012.6214343.
[4] Wang C M, Liang C C, Yu F R, et al. computation offloading and resource allocation in wireless cellular networks with mobile edge computing [J]. IEEE Transactions on Wireless Communications, 2017, 16(8):4924-4938. DOI: 10.1109/TWC.2017.2703901.
[5] Rimal B P, Van D P, Maier M. Mobile-edge computing vs. centralized cloud computing in fiber-wireless access networks [C]//2016 IEEE Conference on Computer Communications Workshops. San Francisco, CA, USA, 2016:16285777. DOI: 10.1109/INFCOMW.2016.7562226.
[6] Mao Y Y, Zhang J, Letaief K B. Dynamic computation offloading for mobile-edge computing with energy harvesting devices[J]. IEEE Journal on Selected Areas in Communications, 2016, 34(12):3590-3605. DOI:10.1109/jsac.2016.2611964.
[7] Xu J, Chen L X, Ren S L. Online learning for offloading andautoscaling in energy harvesting mobile edge computing[J]. IEEE Transactions on Cognitive Communications and Networking, 2017, 3(3): 361-373. DOI:10.1109/tccn.2017.2725277.
[8] Wang C M, Yu F R, Liang C C, et al. Joint computation offloading and interference management in wireless cellular networks with mobile edge computing[J]. IEEE Transactions on Vehicular Technology, 2017, 66(8): 7432-7445. DOI:10.1109/tvt.2017.2672701.
[9] de la Roche G, Valcarce A, Lopez-Perez D, et al. Access control mechanisms for femtocells[J]. IEEE Communications Magazine, 2010, 48(1): 33-39. DOI:10.1109/mcom.2010.5394027.
[10] Zhu K, Hossain E, Niyato D. Pricing, spectrum sharing, and service selection in two-tier small cell networks: A hierarchical dynamic game approach[J]. IEEE Transactions on Mobile Computing, 2014, 13(8): 1843-1856. DOI:10.1109/tmc.2013.96.
[11] Mach P, Becvar Z. Mobile edge computing: A survey on architecture and computation offloading[J]. IEEE Communications Surveys & Tutorials, 2017, 19(3): 1628-1656. DOI:10.1109/comst.2017.2682318.
[12] Niyato D, Hossain E. Dynamics of network selection in heterogeneous wireless networks: An evolutionary game approach[J]. IEEE Transactions on Vehicular Technology, 2009, 58(4):2008-2017. DOI:10.1109/tvt.2008.2004588.
[13] Wei Q L, Lewis F L, Sun Q Y, et al. Discrete-time deterministic Q-learning: A novel convergence analysis[J]. IEEE Transactions on Cybernetics, 2017, 47(5): 1224-1237. DOI:10.1109/tcyb.2016.2542923.
[14] Mwanje S S, Schmelz L C, Mitschele-Thiel A. Cognitive cellular networks: A Q-learning framework for self-organizing networks[J]. IEEE Transactions on Network and Service Management, 2016, 13(1): 85-98. DOI:10.1109/tnsm.2016.2522080.
[15] Do C T, Tran N H, Tran D H, et al. Toward service selection game in a heterogeneous market cloud computing [C]//2015 IFIP/IEEE International Symposium on Integrated Network Management(IM). Ottawa, ON, Canada, 2015:44-52. DOI: 10.1109/INM.2015.7140275.
[16] Yan S, Peng M G, Abana M A, et al. An evolutionary game for user access mode selection in fog radio access networks[J]. IEEE Access, 2017, 5: 2200-2210. DOI:10.1109/access.2017.2654266.