|Table of Contents|

[1] Wu Jun, Song Tiecheng, Yu Yue, Hu Jing, et al. A game-theory approach against Byzantine attackin cooperative spectrum sensing [J]. Journal of Southeast University (English Edition), 2018, 34 (4): 423-429. [doi:10.3969/j.issn.1003-7985.2018.04.002]
Copy

A game-theory approach against Byzantine attackin cooperative spectrum sensing()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
34
Issue:
2018 4
Page:
423-429
Research Field:
Information and Communication Engineering
Publishing date:
2018-12-20

Info

Title:
A game-theory approach against Byzantine attackin cooperative spectrum sensing
Author(s):
Wu Jun Song Tiecheng Yu Yue Hu Jing
School of Information Science and Engineering, Southeast University, Nanjing 211189, China
Keywords:
cooperative spectrum sensing Byzantine attack game theory non-cooperative game Nash equilibrium
PACS:
TN918
DOI:
10.3969/j.issn.1003-7985.2018.04.002
Abstract:
In order to solve the Byzantine attack problem in cooperative spectrum sensing, a non-cooperative game-theory approach is proposed to realize an effective Byzantine defense. First, under the framework of the proposed non-cooperative game theory, the pure Byzantine attack strategy and defense strategy in cooperative spectrum sensing are analyzed from the perspective of the Byzantine attacker and network administrator. The cost and benefit of the pure strategy on both sides are defined. Secondly, the mixed attack and defense strategy are also derived. The closed form Nash equilibrium is obtained by the Lemke-Howson algorithm. Furthermore, the impact of the benefit ratio and penalty rate on the dynamic process of the non-cooperative game is analyzed. Numerical simulation results show that the proposed game-theory approach can effectively defend against the Byzantine attack and save the defensive cost.

References:

[1] Nguyen-Thanh N, Ta D T, Nguyen V T. Spoofing attack and surveillance game in geo-location database driven spectrum sharing [J/OL]. IET Communications, 2018. http://digital-library.theiet.org/content/journals/10.1049/iet-com.2018.5266.DOI: 10.1049/iet-com.2018.5266.
[2] Li J W, Feng Z B, Feng Z Y, et al. A survey of security issues in cognitive radio networks[J]. China Communications, 2015, 12(3): 132-150. DOI:10.1109/cc.2015.7084371.
[3] Lamport L, Shostak R, Pease M. The byzantine generals problem[J]. ACM Transactions on Programming Languages and Systems, 1982, 4(3): 382-401. DOI:10.1145/357172.357176.
[4] Felegyhazi M, Hubaux J P. Game theory in wireless networks: A tutorial, No.LCA-REPORT-2006-002[R]. 2006. https://infoscience.epfl.ch/record/79715.
[5] Le T N, Chin W L, Kao W C. Cross-layer design for primary user emulation attacks detection in mobile cognitive radio networks[J]. IEEE Communications Letters, 2015, 19(5): 799-802. DOI:10.1109/lcomm.2015.2399920.
[6]Borle K M, Chen B, Du W K. Physical layer spectrum usage authentication in cognitive radio: Analysis and implementation[J]. IEEE Transactions on Information Forensics and Security, 2015, 10(10): 2225-2235. DOI:10.1109/tifs.2015.2452893.
[7] Ahmed I K, Fapojuwo A O. Stackelberg equilibria of an anti-jamming game in cooperative cognitive radio networks[J]. IEEE Transactions on Cognitive Communications and Networking, 2018, 4(1): 121-134. DOI:10.1109/tccn.2017.2769121.
[8] Karimi M, Sadough S M S. Efficient transmission strategy for cognitive radio systems under primary user emulation attack[J]. IEEE Systems Journal, 2017: 1-8. DOI:10.1109/jsyst.2017.2747594.
[9] Ahmed I K, Fapojuwo A O. Nash equilibria of deception strategies in the IEEE 802.22 cognitive radio networks [C]// IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE). Windsor, ON, Canada, 2017: 1-5. DOI: 10.1109/CCECE.2017.7946837.
[10] Kakalou I, Psannis K E. Coordination without collaboration in imperfect games: The primary user emulation attack example[J]. IEEE Access, 2018, 6: 5402-5414. DOI:10.1109/access.2018.2791519.
[11] Muthumeenakshi K, Radha S. Spectrum sensing in cognitive radios under noise uncertainty: Decision making using game theory[J]. International Journal on Smart Sensing and Intelligent Systems, 2017, 10(1): 146-173. DOI:10.21307/ijssis-2017-207.
[12] Du H, Fu S, Chu H N. A credibility-based defense SSDF attacks scheme for the expulsion of malicious users in cognitive radio[J]. International Journal of Hybrid Information Technology, 2015, 8(9): 269-280. DOI:10.14257/ijhit.2015.8.9.25.
[13] Wang H, Li Y M, Chang T C. An enhanced cooperative spectrum sensing scheme for anti-SSDF attack based on evidence theory[J]. Microsystem Technologies, 2018, 24(6): 2803-2811. DOI:10.1007/s00542-018-3744-2.
[14] Wu J, Li X, Song T C, et al. Two-stage credit threshold on cooperative spectrum sensing to exclude malicious users in mobile cognitive radio networks [C]// IEEE 85th Vehicular Technology Conference (VTC Spring). Sydney, Australia, 2017: 1-6. DOI: 10.1109/VTCSpring.2017.8108221.
[15] Wang J P, Guo Q, Zheng W X, et al. Robust cooperative spectrum sensing based on adaptive reputation and evidential reasoning theory in cognitive radio network[J]. Circuits, Systems, and Signal Processing, 2018, 37(10): 4455-4481. DOI:10.1007/s00034-018-0774-z.
[16] Wu J, Song T C, Wang C, et al. Robust cooperative spectrum sensing against probabilistic SSDF attack in cognitive radio networks [C]// IEEE 86th Vehicular Technology Conference(VTC-Fall). Toronto, ON, Canada, 2017: 1-6. DOI: 10.1109/VTCFall.2017.8287979.
[17] Zhang L Y, Ding G R, Wu Q H, et al. Byzantine attack and defense in cognitive radio networks: A survey[J]. IEEE Communications Surveys & Tutorials, 2015, 17(3): 1342-1363. DOI:10.1109/comst.2015.2422735.
[18] Bhattacharjee S, Sengupta S, Chatterjee M. Vulnerabilities in cognitive radio networks: A survey[J]. Computer Communications, 2013, 36(13): 1387-1398. DOI:10.1016/j.comcom.2013.06.003.
[19]Kailkhura B, Han Y S, Brahma S, et al. Distributed Bayesian detection in the presence of byzantine data[J]. IEEE Transactions on Signal Processing, 2015, 63(19): 5250-5263. DOI:10.1109/tsp.2015.2450191.
[20] Gibbons R. Game theory for applied economists [M].Princeton, NJ, USA: Princeton University Press, 1992.
[21] Nguyen Thanh N, Ciblat P, Pham A T, et al. Surveillance strategies against primary user emulation attack in cognitive radio networks[J]. IEEE Transactions on Wireless Communications, 2015, 14(9): 4981-4993. DOI:10.1109/twc.2015.2430865.

Memo

Memo:
Biographies: Wu Jun(1988—), male, Ph.D. candidate; Song Tiecheng(corresponding author), male, doctor, professor, songtc@seu.edu.cn.
Foundation item: The National Natural Science Foundation of China(No.61771126).
Citation: Wu Jun, Song Tiecheng, Yu Yue, et al. A game-theory approach against Byzantine attack in cooperative spectrum sensing[J].Journal of Southeast University(English Edition), 2018, 34(4):423-429.DOI:10.3969/j.issn.1003-7985.2018.04.002.
Last Update: 2018-12-20