|Table of Contents|

[1] Nie Jianqiang, Zhang Jian, Ran Bin, et al. Modelling of vehicle interaction behavior duringdiscretionary lane-changing preparation process on freeway [J]. Journal of Southeast University (English Edition), 2018, 34 (4): 524-531. [doi:10.3969/j.issn.1003-7985.2018.04.016]
Copy

Modelling of vehicle interaction behavior duringdiscretionary lane-changing preparation process on freeway()
公路车辆自主性换道准备过程车辆交互行为建模
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
34
Issue:
2018 4
Page:
524-531
Research Field:
Traffic and Transportation Engineering
Publishing date:
2018-12-20

Info

Title:
Modelling of vehicle interaction behavior duringdiscretionary lane-changing preparation process on freeway
公路车辆自主性换道准备过程车辆交互行为建模
Author(s):
Nie Jianqiang1 2 Zhang Jian2 Ran Bin2
1State Key Laboratory of Air Traffic Management System and Technology, The 28th Research Institute of China Electronics Technology Group Corporation, Nanjing 210007, China
2School of Transportation, Southeast University, Nanjing
聂建强1 2 张健2 冉斌2
1中国电子科技集团有限公司第二十八研究所空中交通管理系统和技术国家重点实验, 南京 210007; 2东南大学交通学院, 南京 211189
Keywords:
vehicle interaction behavior discretionary lane-changing preparation process lane-changing vehicle following putative vehicle optimal velocity model
车辆交互行为 自主性换道准备过程 换道车辆 潜在后随车辆 最优速度模型
PACS:
U491.2
DOI:
10.3969/j.issn.1003-7985.2018.04.016
Abstract:
In order to increase the accuracy of microscopic traffic flow simulation, two acceleration models are presented to simulate car-following behaviors of the lane-changing vehicle and following putative vehicle during the discretionary lane-changing preparation(DLCP)process, respectively. The proposed acceleration models can reflect vehicle interaction characteristics. Samples used for describing the starting point and the ending point of DLCP are extracted from a real NGSIM vehicle trajectory data set. The acceleration model for a lane-changing vehicle is supposed to be a linear acceleration model. The acceleration model for the following putative vehicle is constructed by referring to the optimal velocity model, in which optimal velocity is defined as a linear function of the velocity of putative leading vehicle. Similar calibration, a hypothesis test and parameter sensitivity analysis were conducted on the acceleration model of the lane-changing vehicle and following putative vehicle, respectively. The validation results of the two proposed models suggest that the training and testing errors are acceptable compared with similar works on calibrations for car following models. The parameter sensitivity analysis shows that the subtle observed error does not lead to severe variations of car-following behaviors of the lane-changing vehicle and following putative vehicle.
为提高微观交通流模拟的准确性, 分别建立加速度模型来模拟换道车辆和潜在后随车辆在自主性换道准备过程中的跟驰行为, 所建模型能够反映车辆之间的交互特性.自主性换道准备过程起点和终点的样本数据从NGSIM实际车辆轨迹数据集中提取.换道车辆加速度模型假定为线性加速度模型, 潜在后随车辆加速度模型参考最优速度模型建立, 最优速度定义为潜在前导车速度的线性函数.分别对换道车辆和潜在后随车辆加速度模型进行了参数标定、假设检验和参数敏感性分析.2种模型的验证结果表明, 与同类车辆跟驰模型的标定结果相比, 训练和测试误差可以接受.此外, 参数敏感性分析表明, 微小的观测误差不会导致换道车辆和潜在后随车辆的跟驰行为发生剧烈变化.

References:

[1] Zheng Z D. Recent developments and research needs in modeling lane changing[J]. Transportation Research Part B: Methodological, 2014, 60: 16-32. DOI:10.1016/j.trb.2013.11.009.
[2] Rahman M, Chowdhury M, Xie Y, et al. Review of microscopic lane-changing models and future research opportunities[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(4): 1942-1956. DOI:10.1109/tits.2013.2272074.
[3] Gipps P G. A model for the structure of lane-changing decisions[J]. Transportation Research Part B: Methodological, 1986, 20(5): 403-414. DOI:10.1016/0191-2615(86)90012-3.
[4] Halati A, Lieu H, Walker S. CORSIM-corridor traffic simulation model [C]//Transportation Research Board Annual Meeting. Washington, DC, USA, 1997: 570-576.
[5] Hidas P. SITRAS: A simulation model for ITS applications [C]//Towards the New Horizon Together Word Congress on Intelligent Transport Systems. Seoul, Korea, 1998: 3170-3176.
[6] Rickert M, Nagel K, Schreckenberg M, et al. Two lane traffic simulations using cellular automata[J]. Physica A: Statistical Mechanics and its Applications, 1996, 231(4): 534-550. DOI:10.1016/0378-4371(95)00442-4.
[7] Liu H, Xin W, Adams Z, et al. A game theoretical approach for modeling merging and yielding behaviour at freeway on-ramp sections[M]. London: Elsevier, 2007:197-211.
[8] Ahmed K I. Modeling drivers’ acceleration and lane changing behavior[D]. Cambridge, USA: Massachusetts Institute of Technology, 1999.
[9] Toledo T, Koutsopoulos H N, Ben-Akiva M. Integrated driving behavior modeling[J]. Transportation Research Part C: Emerging Technologies, 2007, 15(2): 96-112. DOI:10.1016/j.trc.2007.02.002.
[10] Hunt J G, Lyons G D. Modelling dual carriageway lane changing using neural networks[J]. Transportation Research Part C: Emerging Technologies, 1994, 2(4): 231-245. DOI:10.1016/0968-090x(94)90012-4.
[11] Yan F, Eilers M, Baumann M, et al. Development of a lane change assistance system adapting to driver’s uncertainty during decision-making[C]// Proceedings of the 8th International Conference on Automotive User Interfaces and Interactive Vehicular Applications. ACM, 2016:93-98. DOI:10.1145/3004323.3004334.
[12] Das S. A fuzzy logic model of freeway driver behavior [C]// International ICSC Congress on Computational Intelligence Methods and Applications. Rochester, NY, 1999: 5-11.
[13] Kesting A, Treiber M, Helbing D. General lane-changing model MOBIL for car-following models[J].Transportation Research Record: Journal of the Transportation Research Board, 2007, 1999: 86-94.DOI:10.3141/1999-10.
[14] Moridpour S, Sarvi M, Rose G. Modeling the lane-changing execution of multiclass vehicles under heavy traffic conditions[J]. Transportation Research Record: Journal of the Transportation Research Board, 2010, 2161:11-19. DOI:10.3141/2161-02.
[15] Papadimitriou I, Tomizuka M. Fast lane changing computations using polynomials[J]. Proceedings of the 2003 American Control Conference.Denver, USA, 2003:48-53. DOI:10.1109/acc.2003.1238912.
[16] Kou C, Machemehl R B. Modeling driver behavior during merge maneuvers[D]. Austin, Texas, USA: Southwest Region University Transportation Center, University of Texas, 1997.
[17] Wan X, Jin P, Yang F, et al. Modeling vehicle interactions during merge in congested weaving section of freeway ramp[J]. Transportation Research Record: Journal of the Transportation Research Board, 2014, 2421: 82-92. DOI:10.3141/2421-10.
[18] Wang H, Li Y, Wang W. Modeling lane changing execution on the basis of car following theory[C]//Transportation Research Board Annual Meeting. Washington, DC, USA, 2015: 2651-2662.
[19] Hidas P. Modelling vehicle interactions in microscopic simulation of merging and weaving[J]. Transportation Research Part C: Emerging Technologies, 2005, 13(1): 37-62. DOI:10.1016/j.trc.2004.12.003.
[20] Sun D J, Kondyli A. Modeling vehicle interactions during lane-changing behavior on arterial streets[J].Computer-Aided Civil and Infrastructure Engineering, 2010, 25(8): 557-571. DOI:10.1111/j.1467-8667.2010.00679.x.
[21] Schakel W, Knoop V, van Arem B. Integrated lane change model with relaxation and synchronization[J].Transportation Research Record: Journal of the Transportation Research Board, 2012, 2316: 47-57.DOI:10.3141/2316-06.
[22] Wan X, Jin P, Zheng L, et al. Speed synchronization process of merging vehicles from the entrance ramp[J].Transportation Research Record: Journal of the Transportation Research Board, 2013, 2391: 11-21.DOI:10.3141/2391-02.
[23] Park H, Oh C, Moon J, et al. Development of a lane change risk index using vehicle trajectory data[J].Accident Analysis & Prevention, 2018, 110: 1-8.
[24] Cleveland W S. LOWESS: A program for smoothing scatterplots by robust locally weighted regression[J].The American Statistician, 1981, 35(1): 54. DOI:10.2307/2683591.
[25] Zheng Z, Ahn S, Chen D, et al. The effects of lane-changing on the immediate follower: Anticipation, relaxation, and change in driver characteristics[J]. Transportation Research Part C: Emerging Technologies, 2013, 26: 367-379. DOI:10.1016/j.trc.2012.10.007.
[26] Ghaffari A, Khodayari A, Hosseinkhani N, et al. The effect of a lane change on a car-following manoeuvre: Anticipation and relaxation behaviour [J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2015, 229(7): 809-818.
[27] Sun D J. Alane-changing model for urban arterial streets[D]. Gainesville, FL, USA:University of Florida, 2009.
[28] Ossen S J L. Longitudinal driving behavior: Theory and empirics[D]. Cambridge, USA: Delft University of Technology, 2008.
[29] Bando M, Hasebe K, Nakayama A, et al. Dynamical model of traffic congestion and numerical simulation[J]. Physical Review E, 1995, 51(2): 1035-1042.DOI:10.1103/physreve.51.1035.

Memo

Memo:
Biography: Nie Jianqiang(1988—), male, doctor, engineer, njq_111@163.com.
Foundation items: The National Basic Research Program of China(No.2012CB725405), the National Natural Science Foundation of China(No.51308115), the Science and Technology Demonstration Project of Ministry of Transport of China(No.2015364X16030), Fundamental Research Funds for the Central Universities, the Postgraduate Research & Practice Innovation Program of Jiangsu Province(No.KYLX15_0153).
Citation: Nie Jianqiang, Zhang Jian, Ran Bin. Modelling of vehicle interaction behavior during discretionary lane-changing preparation process on freeway[J].Journal of Southeast University(English Edition), 2018, 34(4):524-531.DOI:10.3969/j.issn.1003-7985.2018.04.016.
Last Update: 2018-12-20