[1] Zheng Z D. Recent developments and research needs in modeling lane changing[J]. Transportation Research Part B: Methodological, 2014, 60: 16-32. DOI:10.1016/j.trb.2013.11.009.
[2] Rahman M, Chowdhury M, Xie Y, et al. Review of microscopic lane-changing models and future research opportunities[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(4): 1942-1956. DOI:10.1109/tits.2013.2272074.
[3] Gipps P G. A model for the structure of lane-changing decisions[J]. Transportation Research Part B: Methodological, 1986, 20(5): 403-414. DOI:10.1016/0191-2615(86)90012-3.
[4] Halati A, Lieu H, Walker S. CORSIM-corridor traffic simulation model [C]//Transportation Research Board Annual Meeting. Washington, DC, USA, 1997: 570-576.
[5] Hidas P. SITRAS: A simulation model for ITS applications [C]//Towards the New Horizon Together Word Congress on Intelligent Transport Systems. Seoul, Korea, 1998: 3170-3176.
[6] Rickert M, Nagel K, Schreckenberg M, et al. Two lane traffic simulations using cellular automata[J]. Physica A: Statistical Mechanics and its Applications, 1996, 231(4): 534-550. DOI:10.1016/0378-4371(95)00442-4.
[7] Liu H, Xin W, Adams Z, et al. A game theoretical approach for modeling merging and yielding behaviour at freeway on-ramp sections[M]. London: Elsevier, 2007:197-211.
[8] Ahmed K I. Modeling drivers’ acceleration and lane changing behavior[D]. Cambridge, USA: Massachusetts Institute of Technology, 1999.
[9] Toledo T, Koutsopoulos H N, Ben-Akiva M. Integrated driving behavior modeling[J]. Transportation Research Part C: Emerging Technologies, 2007, 15(2): 96-112. DOI:10.1016/j.trc.2007.02.002.
[10] Hunt J G, Lyons G D. Modelling dual carriageway lane changing using neural networks[J]. Transportation Research Part C: Emerging Technologies, 1994, 2(4): 231-245. DOI:10.1016/0968-090x(94)90012-4.
[11] Yan F, Eilers M, Baumann M, et al. Development of a lane change assistance system adapting to driver’s uncertainty during decision-making[C]// Proceedings of the 8th International Conference on Automotive User Interfaces and Interactive Vehicular Applications. ACM, 2016:93-98. DOI:10.1145/3004323.3004334.
[12] Das S. A fuzzy logic model of freeway driver behavior [C]// International ICSC Congress on Computational Intelligence Methods and Applications. Rochester, NY, 1999: 5-11.
[13] Kesting A, Treiber M, Helbing D. General lane-changing model MOBIL for car-following models[J].Transportation Research Record: Journal of the Transportation Research Board, 2007, 1999: 86-94.DOI:10.3141/1999-10.
[14] Moridpour S, Sarvi M, Rose G. Modeling the lane-changing execution of multiclass vehicles under heavy traffic conditions[J]. Transportation Research Record: Journal of the Transportation Research Board, 2010, 2161:11-19. DOI:10.3141/2161-02.
[15] Papadimitriou I, Tomizuka M. Fast lane changing computations using polynomials[J]. Proceedings of the 2003 American Control Conference.Denver, USA, 2003:48-53. DOI:10.1109/acc.2003.1238912.
[16] Kou C, Machemehl R B. Modeling driver behavior during merge maneuvers[D]. Austin, Texas, USA: Southwest Region University Transportation Center, University of Texas, 1997.
[17] Wan X, Jin P, Yang F, et al. Modeling vehicle interactions during merge in congested weaving section of freeway ramp[J]. Transportation Research Record: Journal of the Transportation Research Board, 2014, 2421: 82-92. DOI:10.3141/2421-10.
[18] Wang H, Li Y, Wang W. Modeling lane changing execution on the basis of car following theory[C]//Transportation Research Board Annual Meeting. Washington, DC, USA, 2015: 2651-2662.
[19] Hidas P. Modelling vehicle interactions in microscopic simulation of merging and weaving[J]. Transportation Research Part C: Emerging Technologies, 2005, 13(1): 37-62. DOI:10.1016/j.trc.2004.12.003.
[20] Sun D J, Kondyli A. Modeling vehicle interactions during lane-changing behavior on arterial streets[J].Computer-Aided Civil and Infrastructure Engineering, 2010, 25(8): 557-571. DOI:10.1111/j.1467-8667.2010.00679.x.
[21] Schakel W, Knoop V, van Arem B. Integrated lane change model with relaxation and synchronization[J].Transportation Research Record: Journal of the Transportation Research Board, 2012, 2316: 47-57.DOI:10.3141/2316-06.
[22] Wan X, Jin P, Zheng L, et al. Speed synchronization process of merging vehicles from the entrance ramp[J].Transportation Research Record: Journal of the Transportation Research Board, 2013, 2391: 11-21.DOI:10.3141/2391-02.
[23] Park H, Oh C, Moon J, et al. Development of a lane change risk index using vehicle trajectory data[J].Accident Analysis & Prevention, 2018, 110: 1-8.
[24] Cleveland W S. LOWESS: A program for smoothing scatterplots by robust locally weighted regression[J].The American Statistician, 1981, 35(1): 54. DOI:10.2307/2683591.
[25] Zheng Z, Ahn S, Chen D, et al. The effects of lane-changing on the immediate follower: Anticipation, relaxation, and change in driver characteristics[J]. Transportation Research Part C: Emerging Technologies, 2013, 26: 367-379. DOI:10.1016/j.trc.2012.10.007.
[26] Ghaffari A, Khodayari A, Hosseinkhani N, et al. The effect of a lane change on a car-following manoeuvre: Anticipation and relaxation behaviour [J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2015, 229(7): 809-818.
[27] Sun D J. Alane-changing model for urban arterial streets[D]. Gainesville, FL, USA:University of Florida, 2009.
[28] Ossen S J L. Longitudinal driving behavior: Theory and empirics[D]. Cambridge, USA: Delft University of Technology, 2008.
[29] Bando M, Hasebe K, Nakayama A, et al. Dynamical model of traffic congestion and numerical simulation[J]. Physical Review E, 1995, 51(2): 1035-1042.DOI:10.1103/physreve.51.1035.