[1] Huang Q G, Pan G, Song B W. Lattice Boltzmann simulation of slip flow and drag reduction characteristics of hydrophobic surfaces[J]. Acta Physica Sinica, 2014, 63(5): 236-242. DOI:10.7498/aps.63.054701. (in Chinese)
[2] Li Dongqing. Encyclopedia of microfluidics and nanofluidics [M]. 2nd ed. New York: Springer-Verlag, 2015: 681-693.
[3] Wu L, Reese J M, Zhang Y H. Solving the Boltzmann equation deterministically by the fast spectral method: application to gas microflows[J]. Journal of Fluid Mechanics, 2014, 746: 53-84. DOI:10.1017/jfm.2014.79.
[4] Pfeiffer M, Nizenkov P, Mirza A, et al. Direct simulation Monte Carlo modeling of relaxation processes in polyatomic gases[J]. Physics of Fluids, 2016, 28(2): 027103. DOI:10.1063/1.4940989.
[5] Bakhshan Y, Omidvar A. Calculation of friction coefficient and analysis of fluid flow in a stepped micro-channel for wide range of Knudsen number using Lattice Boltzmann(MRT)method[J]. Physica A: Statistical Mechanics and Its Applications, 2015, 440: 161-175. DOI:10.1016/j.physa.2015.08.012.
[6] Yang D Y, Wang M. Lattice Boltzmann method[M]. Beijing: Publishing House of Electronics Industry, 2015: 69-70.(in Chinese)
[7] Nie X B, Doolen G D, Chen S Y. Lattice-Boltzmann simulations of fluid flows in MEMS[J].Journal of Statistical Physics, 2002, 107(1/2): 279-289. DOI:10.1023/a:1014523007427.
[8] Kim S H, Pitsch H, Boyd I D. Slip velocity and Knudsen layer in the lattice Boltzmann method for microscale flows[J]. Physical Review E, 2008, 77(2): 026704. DOI:10.1103/physreve.77.026704.
[9] Succi S. Mesoscopic modeling of slip motion at fluid-solid interfaces with heterogeneous catalysis[J]. Physical Review Letters, 2002, 89(6): 064502. DOI:10.1103/physrevlett.89.064502.
[10] Ansumali S, Karlin I V. Kinetic boundary conditions in the lattice Boltzmann method[J]. Physical Review E, 2002, 66(2): 026311. DOI:10.1103/physreve.66.026311.
[11] Tang G H, Tao W Q, He Y L. Lattice Boltzmann method for gaseous microflows using kinetic theory boundary conditions[J]. Physics of Fluids, 2005, 17(5): 058101. DOI:10.1063/1.1897010.
[12] Meng X H, Guo Z L. Multiple-relaxation-time lattice Boltzmann model for incompressible miscible flow with large viscosity ratio and high Péclet number[J]. Physical Review E, 2015, 92(4): 043305. DOI:10.1103/physreve.92.043305.
[13] Park J H, Bahukudumbi P, Beskok A. Rarefaction effects on shear driven oscillatory gas flows: A direct simulation Monte Carlo study in the entire Knudsen regime[J]. Physics of Fluids, 2004, 16(2): 317-330. DOI:10.1063/1.1634563.
[14] Tang G H, Gu X J, Barber R W, et al. Lattice Boltzmann simulation of nonequilibrium effects in oscillatory gas flow[J]. Physical Review E, 2008, 78(2): 026706. DOI:10.1103/physreve.78.026706.
[15] Guo Z. Lattice Boltzmann equation with multiple effective relaxation times for gaseous microscale flow[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2008, 77(3): 036707. DOI:10.1103/PhysRevE.77.036707.
[16] Hadjiconstantinou N G. Oscillatory shear-driven gas flows in the transition and free-molecular-flow regimes[J]. Physics of Fluids, 2005, 17(10): 100611. DOI:10.1063/1.1874193.