|Table of Contents|

[1] Cai Jing, Chen Jianlong,. Some new bound estimates of the Hermitian positive definitesolutions of the nonlinear matrix equation Xss+A*X-tA=Q [J]. Journal of Southeast University (English Edition), 2019, 35 (1): 142-146. [doi:10.3969/j.issn.1003-7985.2019.01.020]
Copy

Some new bound estimates of the Hermitian positive definitesolutions of the nonlinear matrix equation Xss+A*X-tA=Q()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
35
Issue:
2019 1
Page:
142-146
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2019-03-30

Info

Title:
Some new bound estimates of the Hermitian positive definitesolutions of the nonlinear matrix equation Xss+A*X-tA=Q
Author(s):
Cai Jing1 2 Chen Jianlong1
1School of Mathematics, Southeast University, Nanjing 211189, China
2School of Science, Huzhou University, Huzhou 313000, China
Keywords:
nonlinear matrix equation Hermitian positive definite solution solution bound matrix inequality
PACS:
O241.5
DOI:
10.3969/j.issn.1003-7985.2019.01.020
Abstract:
The range and existence conditions of the Hermitian positive definite solutions of nonlinear matrix equations Xs+A*X-tA=Q are studied, where A is an n×n non-singular complex matrix and Q is an n×n Hermitian positive definite matrix and parameters s, t>0. Based on the matrix geometry theory, relevant matrix inequality and linear algebra technology, according to the different value ranges of the parameters s, t, the existence intervals of the Hermitian positive definite solution and the necessary conditions for equation solvability are presented, respectively. Comparing the existing correlation results, the proposed upper and lower bounds of the Hermitian positive definite solution are more accurate and applicable.

References:

[1] Anderson W N, Morley T D, Trapp G E. Positive solutions to X=A-BX-1B* [J]. Linear Algebra and Its Applications, 1990, 134: 53-62. DOI:10.1016/0024-3795(90)90005-W.
[2] Ivanov I G, Uhlig F. Improved methods and starting values to solve the matrix equations X±A*X-1A=I iteratively[J]. Mathematics of Computation, 2005, 74: 263-278. DOI:10.1090/S0025-5718-04-01636-9.
[3] Li L, Wang Q W, Shen S Q. On positive definite solutions of the nonlinear matrix equations X±A*XqqA=Q[J]. Applied Mathematics and Computation, 2015, 271: 556-566. DOI: 10.1016/j.amc.2015.09.002.
[4] Naglaa M E. On the perturbation estimates of the maximal solution for the matrix equation X+ATTX-1A=P [J]. Journal of the Egyptian Mathematical Society, 2016, 24(4): 644-649. DOI: 10.1016/j.joems.2016.04.004.
[5] Hasanov V I, Hakkaev S A. Convergence analysis of some iterative methods for a nonlinear matrix equation[J]. Computers and Mathematics with Applications, 2016, 72(4): 1164-1176. DOI: 10.1016/j.camwa.2016.06.035.
[6] Engwerda J C, Ran A C M, Rijkeboer A L. Necessary and sufficient conditions for the existence of a positive X±A*XqqA=Q [J]. Linear Algebra and Its Applications, 1993, 186: 255-275. DOI: 10.1016/0024-3795(93)90295-Y.
[7] El-Sayed S M, Al-Dbiban A M. A new inversion free iteration for solving the equation X+A*X-1A=Q[J]. Journal of Computational and Applied Mathematics, 2005, 181: 148-156. DOI: 10.1016/j.cam.2004.11.025.
[8] Chiang C Y. An accelerated technique for solving the positive definite solutions of a class of nonlinear matrix equations[J]. Journal of the Franklin Institute, 2017, 354(15): 7088-7118. DOI: 10.1016/j.jfranklin.2017.08.018.
[9] Hasanov V I, Ivanov I G. Solutions and perturbation estimates for the matrix equations X±A*X-nA=Q [J]. Applied Mathematics and Computation, 2004, 156(2): 513-525. DOI: 10.1016/j.amc.2003.08.007.
[10] Ivanov I G. On positive definite solutions of the family of matrix equations X+A*X-nA=Q[J]. Journal of Computational and Applied Mathematics, 2006, 193: 277-301. DOI: 10.1016/j.cam.2005.06.007.
[11] Liu X G, Gao H. On the positive definite solutions of the equation Xss+A*X-tA=Inn [J]. Linear Algebra and Its Applications, 2003, 368: 83-97. DOI: 10.1016/S0024-3795(02)00661-4.
[12] Yang Y T. The iterative method for solving nonlinear matrix equation Xss+A*X-tA=Q[J]. Applied Mathematics and Computation, 2007, 188(1): 46-53.DOI: 10.1016/j.amc.2006.09.085.
[13] Duan X F, Liao A P. On the existence of Hermitian positive definite solutions of the matrix equation Xss+A*X-tA=Q [J]. Linear Algebra and Its Applications, 2008, 429: 673-687. DOI: 10.1016/j.laa.2008.03.019.
[14] Hasanov V I, El-Sayed S M. On the positive definite solutions of nonlinear matrix equation X+A*X-δA=Q[J]. Linear Algebra and Its Applications, 2006, 412: 154-160. DOI: 10.1016/j.laa.2005.06.026.
[15] Duan X F, Liao A P. On the nonlinear matrix equation X+A*X-qA=Q(q≥1)[J]. Mathematical and Computer Modelling, 2009, 49: 936-945. DOI: 10.1016/j.mcm.2008.10.009.
[16] Cai J, Chen G L. On the Hermitian positive definite solutions of nonlinear matrix equation Xss+A*X-tA=Q [J]. Applied Mathematics and Computation, 2010, 217(1): 117-123. DOI: 10.1016/j.amc.2010.05.023.
[17] Zhou D M, Chen G L, Wu G X, et al. Some properties of the nonlinear matrix equation Xss+A*X-tA=Q [J]. Journal of Mathematical Analysis and Applications, 2012, 392: 75-82. DOI: 10.1016/j.jmaa.2012.02.046.
[18] Zhan X Z. Matrix inequalities[M]//Lecture Notes in Mathematics. Springer. 2002, 1790:1-115. DOI: 10.1007/b83956.
[19] Furuta T. Operator inequalities associated with Holder-McCarthy and Kantorovich inequalities[J]. Journal of Inequalities and Applications, 1998, 6: 137-148. DOI: 10.1155/S1025583498000083.

Memo

Memo:
Biographies: Cai Jing(1975—), female, doctor, associate professor, huzhoucaijing@163.com; Chen Jianlong(corresponding author), male, doctor, professor, jlchen@seu.edu.cn.
Foundation items: The National Natural Science Foundation of China(No.11371089), the China Postdoctoral Science Foundation(No.2016M601688).
Citation: Cai Jing, Chen Jianlong.Some new bound estimates of the Hermitian positive definite solutions of the nonlinear matrix equation Xss+A*X-tA=Q[J].Journal of Southeast University(English Edition), 2019, 35(1):142-146.DOI:10.3969/j.issn.1003-7985.2019.01.020.
Last Update: 2019-03-20