|Table of Contents|

[1] Sun Wenqing, Deng Aidong, Deng Minqiang, Zhu Jing, et al. Multi-view feature fusion for rolling bearing faultdiagnosis using random forest and autoencoder [J]. Journal of Southeast University (English Edition), 2019, 35 (3): 302-309. [doi:10.3969/j.issn.1003-7985.2019.03.005]
Copy

Multi-view feature fusion for rolling bearing faultdiagnosis using random forest and autoencoder()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
35
Issue:
2019 3
Page:
302-309
Research Field:
Mechanical Engineering
Publishing date:
2019-09-30

Info

Title:
Multi-view feature fusion for rolling bearing faultdiagnosis using random forest and autoencoder
Author(s):
Sun Wenqing Deng Aidong Deng Minqiang Zhu Jing Zhai Yimeng Cheng Qiang Liu Yang
National Engineering Research Center of Turbo-Generator Vibration, Southeast University, Nanjing 210096, China
School of Energy and Environment, Southeast University, Nanjing 210096, China
Keywords:
multi-view features feature fusion fault diagnosis rolling bearing machine learning
PACS:
TH133.33
DOI:
10.3969/j.issn.1003-7985.2019.03.005
Abstract:
To improve the accuracy and robustness of rolling bearing fault diagnosis under complex conditions, a novel method based on multi-view feature fusion is proposed. Firstly, multi-view features from perspectives of the time domain, frequency domain and time-frequency domain are extracted through the Fourier transform, Hilbert transform and empirical mode decomposition(EMD).Then, the random forest model(RF)is applied to select features which are highly correlated with the bearing operating state. Subsequently, the selected features are fused via the autoencoder(AE)to further reduce the redundancy. Finally, the effectiveness of the fused features is evaluated by the support vector machine(SVM). The experimental results indicate that the proposed method based on the multi-view feature fusion can effectively reflect the difference in the state of the rolling bearing, and improve the accuracy of fault diagnosis.

References:

[1] Hossain M, Abu-Siada A, Muyeen S. Methods for advanced wind turbine condition monitoring and early diagnosis: A literature review[J].Energies, 2018, 11(5): 1309. DOI:10.3390/en11051309.
[2] Yang W, Tavner P J, Crabtree C J, et al. Cost-effective condition monitoring for wind turbines[J].IEEE Transactions on Industrial Electronics, 2010, 57(1): 263-271. DOI:10.1109/tie.2009.2032202.
[3] Kay S M, Marple S L. Spectrum analysis: A modern perspective[J].Proceedings of the IEEE, 1981, 69(11): 1380-1419. DOI:10.1109/proc.1981.12184.
[4] Boashash B. Time-frequency signal analysis and processing: A comprehensive reference [M]. Oxford: Elsevier Science, 2016:8-9.
[5] Chen Y, Zhou C, Yuan J, et al. Application of empirical mode decomposition in random noise attenuation of seismic data [J]. Journal of Seismic Exploration, 2014, 23: 481-495.
[6] Jia F, Lei Y G, Lin J, et al. Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data[J]. Mechanical Systems and Signal Processing, 2016, 72/73: 303-315. DOI:10.1016/j.ymssp.2015.10.025.
[7] Bishop C. Pattern recognition and machine learning[M]. New York: Springer-Verlag, 2006:559-561.
[8] Cao W H, Xu J P, Liu Z T. Speaker-independent speech emotion recognition based on random forest feature selection algorithm[C]// Proceedings of the 36th Chinese Control Conference(CCC). Dalian, China, 2017. DOI:10.23919/chicc.2017.8029112.
[9] Kursa M B, Rudnicki W R. Feature selection with the BorutaPackage[J].Journal of Statistical Software, 2010, 36(11):1-13. DOI:10.18637/jss.v036.i11.
[10] Liou C Y, Cheng W C, Liou J W, et al. Autoencoder for words[J].Neurocomputing, 2014, 139: 84-96. DOI:10.1016/j.neucom.2013.09.055.
[11] Zhao X P, Wu J X, Zhang Y H, et al. Fault diagnosis of motor in frequency domain signal by stacked de-noising auto-encoder[J].Computers, Materials & Continua, 2018, 57(2): 223-242. DOI:10.32604/cmc.2018.02490.
[12] Zhang X Y, Liang Y T, Zhou J Z, et al. A novel bearing fault diagnosis model integrated permutation entropy, ensemble empirical mode decomposition and optimized SVM[J].Measurement, 2015, 69: 164-179. DOI:10.1016/j.measurement.2015.03.017.
[13] Karperien A. Defining microglial morphology: Form, function, and fractal dimension[M]. Queensland, Australia: Charles Sturt University, 2004:99-102.
[14] Forouzannezhad P, Abbaspour A, Cabrerizo M, et al. Early diagnosis of mild cognitive impairment using random forest feature selection[C]//2018 IEEE Biomedical Circuits and Systems Conference(BioCAS). Cleveland, OH, USA: IEEE, 2018. DOI:10.1109/biocas.2018.8584773.
[15] Li B Q, Cai Y D, Feng K Y, et al. Prediction of protein cleavage site with feature selection by random forest[J].PLoS One, 2012, 7(9): e45854. DOI:10.1371/journal.pone.0045854.
[16] Chen Z Y, Li W H. Multisensor feature fusion for bearing fault diagnosis using sparse autoencoder and deep belief network[J].IEEE Transactions on Instrumentation and Measurement, 2017, 66(7): 1693-1702. DOI:10.1109/tim.2017.2669947.
[17] Zheng J D, Cheng J S, Yang Y. Generalized empirical mode decomposition and its applications to rolling element bearing fault diagnosis[J].Mechanical Systems and Signal Processing, 2013, 40(1): 136-153. DOI:10.1016/j.ymssp.2013.04.005.

Memo

Memo:
Biographies: Sun Wenqing(1994—), male, graduate; Deng Aidong(corresponding author), male, doctor, professor, dnh@seu.edu.cn.
Foundation item: The National Natural Science Foundation of China(No. 51875100).
Citation: Sun Wenqing, Deng Aidong, Deng Minqiang, et al.Multi-view feature fusion for rolling bearing fault diagnosis using random forest and autoencoder[J].Journal of Southeast University(English Edition), 2019, 35(3):302-309.DOI:10.3969/j.issn.1003-7985.2019.03.005.
Last Update: 2019-09-20