[1] Mudanai S, Fan Y Y, Ouyang Q, et al. Modeling of direct tunneling current through gate dielectric stacks[J].IEEE Transactions on Electron Devices, 2000, 47(10): 1851-1857. DOI:10.1109/16.870561.
[2] Feldman L C, Gusev E P, Garfunkel E. Ultrathin dielectrics in silicon microelectronics[M]//Fundamental Aspects of Ultrathin Dielectrics on Si-based Devices. Dordrecht: Springer Netherlands, 1998: 1-24. DOI:10.1007/978-94-011-5008-8_1.
[3] Hollinger G, Himpsel F J. Probing the transition layer at the SiO2-Si interface using core level photoemission[J]. Applied Physics Letters, 1984, 44(1): 93-95. DOI:10.1063/1.94565.
[4] Evans M H, Caussanel M, Schrimpf R D, et al. First-principles modeling of double-gate UTSOI MOSFETs[C]//IEEE International Electron Devices Meeting. Tempe, Arizon, USA, 2005:577-580. DOI:10.1109/iedm.2005.1609420.
[5] Hakala M H, Foster A S, Gavartin J L, et al. Interfacial oxide growth at silicon/high-k oxide interfaces: First principles modeling of the Si-HfO2 interface[J]. Journal of Applied Physics, 2006, 100(4): 043708. DOI:10.1063/1.2259792.
[6] Green M L, Gusev E P, Degraeve R, et al. Ultrathin(<4 nm)SiO2 and Si-O-N gate dielectric layers for silicon microelectronics: Understanding the processing, structure, and physical and electrical limits[J]. Journal of Applied Physics, 2001, 90(5): 2057-2121. DOI:10.1063/1.1385803.
[7] Poindexter E H, Gerardi G J, Rueckel M E, et al. Electronic traps and Pb centers at the Si/SiO2 interface: Band-gap energy distribution[J]. Journal of Applied Physics, 1984, 56(10): 2844-2849. DOI:10.1063/1.333819.
[8] Muller D A, Sorsch T, Moccio S, et al. The electronic structure at the atomic scale of ultrathin gate oxides[J].Nature, 1999, 399(6738): 758-761. DOI:10.1038/21602.
[9] Watanabe T, Tatsumura K, Ohdomari I. SiO2/Si interface structure and its formation studied by large-scale molecular dynamics simulation[J]. Applied Surface Science, 2004, 237(1/2/3/4): 125-133. DOI:10.1016/j.apsusc.2004.06.044.
[10] Steinrück H G, Schiener A, Schindler T, et al. Nanoscale structure of Si/SiO2/organics interfaces[J]. ACS Nano, 2014, 8(12): 12676-12681. DOI:10.1021/nn5056223.
[11] Kovaevi G, Pivac B. Structure, defects, and strain in silicon-silicon oxide interfaces[J].Journal of Applied Physics, 2014, 115(4): 043531. DOI:10.1063/1.4862809.
[12] Bongiorno A, Pasquarello A. Atomistic structure of the Si(100)-SiO2 interface: A synthesis of experimental data[J]. Applied Physics Letters, 2003, 83(7): 1417-1419. DOI:10.1063/1.1604470.
[13] Diebold A C, Venables D, Chabal Y, et al. Characterization and production metrology of thin transistor gate oxide films[J]. Materials Science in Semiconductor Processing, 1999, 2(2): 103-147. DOI:10.1016/S1369-8001(99)00009-8.
[14] van Ginhoven R M, Hjalmarson H P. Atomistic simulation of Si/SiO2 interfaces[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2007, 255(1): 183-187. DOI:10.1016/j.nimb.2006.11.022.
[15] Pasquarello A, Hybertsen M S, Car R. Structurally relaxed models of the Si(001)-SiO2 interface[J]. Applied Physics Letters, 1996, 68(5): 625-627. DOI:10.1063/1.116489.
[16] Yamasaki T, Kaneta C, Uchiyama T, et al. Geometric and electronic structures of SiO2/Si(001)interfaces[J]. Physical Review B, 2001, 63(11): 115314. DOI:10.1103/physrevb.63.115314.
[17] Tu Y H, Tersoff J. Structure and energetics of the Si-SiO2 interface[J]. Physical Review Letters, 2000, 84(19): 4393-4396. DOI:10.1103/physrevlett.84.4393.
[18] Kovaevi G, Pivac B. Modeling the interface between crystalline silicon and silicon oxide polymorphs[J].Physica Status Solidi, 2013, 210(4): 717-722. DOI:10.1002/pssa.201200447.
[19] Rani E, Ingale A, Phase D M, et al. Band gap tuning in Si-SiO2 nanocomposite: Interplay of confinement effect and surface/interface bonding[J]. Applied Surface Science, 2017, 425: 1089-1094. DOI:10.1016/j.apsusc.2017.07.133.
[20] Rani E, Ingale A A, Chaturvedi A, et al. Correlation of size and oxygen bonding at the interface of Si nanocrystal in Si-SiO2 nanocomposite: A Raman mapping study[J]. Journal of Raman Spectroscopy, 2016, 47(4): 457-467. DOI:10.1002/jrs.4832.
[21] Rani E, Ingale A A, Chaturvedi A, et al. Resonance Raman mapping as a tool to monitor and manipulate Si nanocrystals in Si-SiO2 nanocomposite[J]. Applied Physics Letters, 2015, 107(16): 163112. DOI:10.1063/1.4934664.
[22] Wen J L, Ma T B, Zhang W W, et al. Atomic insight into tribochemical wear mechanism of silicon at the Si/SiO2 interface in aqueous environment: Molecular dynamics simulations using ReaxFF reactive force field[J]. Applied Surface Science, 2016, 390: 216-223. DOI:10.1016/j.apsusc.2016.08.082.
[23] Ono T, Egami Y, Kutsuki K, et al. First-principles study of the electronic structures and dielectric properties of the Si/SiO2 interface[J]. Journal of Physics—Condensed Matter, 2001, 19(36): 365202.
[24] Corsetti F, Mostofi A A. A first-principles study of As doping at a disordered Si-SiO2 interface[J]. Journal of Physics: Condensed Matter, 2014, 26(5): 055002. DOI:10.1088/0953-8984/26/5/055002.
[25] Li H F, Guo Y Z, Robertson J, et al. Ab-initio simulations of higher Miller index Si: SiO2 interfaces for fin field effect transistor and nanowire transistors[J]. Journal of Applied Physics, 2016, 119(5): 054103. DOI:10.1063/1.4941272.
[26] Kim B H, Kim G, Park K, et al. Effects of suboxide layers on the electronic properties of Si(100)/SiO2 interfaces: Atomistic multi-scale approach[J]. Journal of Applied Physics, 2013, 113(7): 073705. DOI:10.1063/1.4791706.
[27] Ono T. First-principles study of leakage current through a Si/SiO2 interface[J]. Physical Review B, 2009, 79(19): 195326. DOI:10.1103/physrevb.79.195326.
[28] Markov S, Sushko P, Fiegna C, et al. Fromab initioproperties of the Si-SiO2 interface, to electrical characteristics of metal-oxide-semiconductor devices[J]. Journal of Physics: Conference Series, 2010, 242: 012010. DOI:10.1088/1742-6596/242/1/012010.
[29] Zafar S, Liu Q, Irene E A. Study of tunneling current oscillation dependence on SiO2 thickness and Si roughness at the Si/SiO2 interface[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1995, 13(1): 47-53. DOI:10.1116/1.579442.
[30] Sacconi F, di Carlo A, Lugli P, et al. Full band approach to tunneling in MOS structures[J].IEEE Transactions on Electron Devices, 2004, 51(5): 741-748. DOI:10.1109/ted.2004.826862.
[31] Yamada Y, Tsuchiya H, Ogawa M. A first principles study on tunneling current through Si/SiO2/Si structures[J]. Journal of Applied Physics, 2009, 105(8): 083702. DOI:10.1063/1.3106115.
[32] Herman F, Batra I P, Kasowski R V. The physics of SiO2 and its interfaces[M]. Oxford: Pergamon, 1978:333-338.
[33] Seino K, Bechstedt F. Effective density of states and carrier masses for Si/SiO2 superlattices from first principles[J]. Semiconductor Science and Technology, 2011, 26(1): 014024. DOI:10.1088/0268-1242/26/1/014024.
[34] Carrier P, Lewis L J, Dharma-Wardana M W C. Electron confinement and optical enhancement in Si/SiO2 superlattices[J]. Physical Review B, 2001, 64(19): 195330. DOI:10.1103/physrevb.64.195330.
[35] Seino K, Wagner J M, Bechstedt F. Quasiparticle effect on electron confinement in Si/SiO2 quantum-well structures[J]. Applied Physics Letters, 2007, 90(25): 253109. DOI:10.1063/1.2750526.
[36] Zhu H W, Liu Y S, Mao L F, et al. Theoretical study of the SiO2/Si interface and its effect on energy band profile and MOSFET gate tunneling current[J]. Journal of Semiconductors, 2010, 31(8): 082003. DOI:10.1088/1674-4926/31/8/082003.
[37] Segall M D, Lindan P J D, Probert M J, et al. First-principles simulation: Ideas, illustrations and the CASTEP code[J].Journal of Physics: Condensed Matter, 2002, 14(11): 2717-2744. DOI:10.1088/0953-8984/14/11/301.
[38] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J].Physical Review Letters, 1996, 77(18): 3865. DOI:10.1103/physrevlett.77.3865.
[39] Jie W J, Chen X, Li D, et al. Layer-dependent nonlinear optical properties and stability of non-centrosymmetric modification in few-layer GaSe sheets[J]. Angewandte Chemie (International Edition in English), 2015, 54(4): 1185-1189. DOI:10.1002/anie.201409837.
[40] Niedfeldt K, Carter E A, Nordlander P. First principles resonance widths for Li near an Al(001)surface: Predictions of scattered ion neutralization probabilities[J].The Journal of Chemical Physics, 2004, 121(8): 3751-3755. DOI:10.1063/1.1777218.
[41] Lu Z H, Lockwood D J, Baribeau J M. Quantum confinement and light emission in SiO2/Si superlattices[J]. Nature, 1995, 378(6554): 258-260. DOI:10.1038/378258a0.
[42] Chen H X, Shi D N, Qi J S, et al. The stability and electronic properties of wurtzite and zinc-blende ZnS nanowires[J].Physics Letters A, 2009, 373(3): 371-375. DOI:10.1016/j.physleta.2008.11.060.
[43] van de Walle C G, Martin R M. Theoretical study of band offsets at semiconductor interfaces[J].Physical Review B, 1987, 35(15): 8154. DOI:10.1103/physrevb.35.8154.
[44] Yamashita Y, Yamamoto S, Mukai K. Direct observation of site-specific valence electronic structure at the SiO2/Si interface[J]. Physical Review B, 2006, 73(4): 45336.
[45] Alkauskas A, Broqvist P, Devynck F, et al. Band offsets at semiconductor-oxide interfaces from hybrid density-functional calculations[J]. Physical Review Letters, 2008, 101(10): 106802. DOI:10.1103/physrevlett.101.106802.
[46] Kimura K, Nakajima K. Compositional transition layer in SiO2/Si interface observed by high-resolution RBS[J]. Applied Surface Science, 2003, 216(1/2/3/4): 283-286. DOI:10.1016/s0169-4332(03)00386-6.
[47] Ando Y, Itoh T. Calculation of transmission tunneling current across arbitrary potential barriers[J].Journal of Applied Physics, 1987, 61(4): 1497-1502. DOI:10.1063/1.338082.
[48] Mao L F, Tan C H, Xu M Z. The effect of image potential on electron transmission and electric current in the direct tunneling regime of ultra-thin MOS structures[J]. Microelectronics Reliability, 2001, 41(6): 927-931. DOI:10.1016/s0026-2714(01)00037-3.
[49] Mao L F, Tan C H, Xu M Z. Estimate of width of transition region of barrier for thin film insulator MOS structure using Fowler-Nordheim tunneling current[J]. Chinese Journal of Semiconductors, 2001, 22(2): 228-233.(in Chinese)
[50] Jeppson K O. Influence of the channel width on the threshold voltage modulation in m.o.s.f.e.t.s[J].Electronics Letters, 1975, 11(14): 297–299. DOI:10.1049/el:19750225.
[51] Fuse G, Fukumoto M, Shinohara A, et al. A new isolation method with boron-implanted sidewalls for controlling narrow-width effect[J].IEEE Transactions on Electron Devices, 1987, 34(2): 356-360. DOI:10.1109/t-ed.1987.22930.
[52] Yeo Y C, Lu Q, Lee W C, et al. Direct tunneling gate leakage current in transistors with ultrathin silicon nitride gate dielectric[J].IEEE Electron Device Letters, 2000, 21(11): 540-542. DOI:10.1109/55.877204.