[1] Yang Z B, Jia M P. GA-1DLCNN method and its application in bearing fault diagnosis[J]. Journal of Southeast University(English Edition), 2019, 35(1): 36-42.
[2] She D M, Jia M P, Zhang W. Deep auto-encoder network method for health assessment of rolling bearings[J]. Journal of Southeast University(Natural Science Edition), 2018, 48(5): 801-806.(in Chinese)
[3] Boškoski P, Gašperin M, Petelin D, et al. Bearing fault prognostics using Rényi entropy based features and Gaussian process models[J].Mechanical Systems and Signal Processing, 2015, 52—53: 327-337. DOI:10.1016/j.ymssp.2014.07.011.
[4] Rai A, Upadhyay S H. An integrated approach to bearing prognostics based on EEMD-multi feature extraction, Gaussian mixture models and Jensen-Rényi divergence[J].Applied Soft Computing, 2018, 71: 36-50. DOI:10.1016/j.asoc.2018.06.038.
[5] Jia X D, Jin C, Buzza M, et al. A deviation based assessment methodology for multiple machine health patterns classification and fault detection[J].Mechanical Systems and Signal Processing, 2018, 99: 244-261. DOI:10.1016/j.ymssp.2017.06.015.
[6] Wang F T, Chen X T, Yan D W, et al. Fuzzy C-means using manifold learning and its application to rolling bearing performance degradation assessment[J]. Journal of Mechanical Engineering, 2016, 52(15): 59-64. DOI:10.3901/JME.2016.15.059. (in Chinese)
[7] Widodo A, Yang B S. Application of relevance vector machine and survival probability to machine degradation assessment[J].Expert Systems With Applications, 2011, 38(3): 2592-2599. DOI:10.1016/j.eswa.2010.08.049.
[8] Lu C, Yuan T, Tang Y N. Bearing performance degradation assessment and prediction based on EMD and PCA-SOM [J]. Journal of Vibroengineering, 2014, 16(3): 1387-1396.
[9] Liao L X, Lee J. A novel method for machine performance degradation assessment based on fixed cycle features test[J].Journal of Sound and Vibration, 2009, 326(3/4/5): 894-908. DOI:10.1016/j.jsv.2009.05.005.
[10] Dragomiretskiy K, Zosso D. Variational mode decomposition[J].IEEE Transactions on Signal Processing, 2014, 62(3): 531-544. DOI:10.1109/tsp.2013.2288675.
[11] Li Z P, Chen J L, Zi Y Y, et al. Independence-oriented VMD to identify fault feature for wheel set bearing fault diagnosis of high speed locomotive[J].Mechanical Systems and Signal Processing, 2017, 85: 512-529. DOI:10.1016/j.ymssp.2016.08.042.
[12] Zhang M, Jiang Z N, Feng K. Research on variational mode decomposition in rolling bearings fault diagnosis of the multistage centrifugal pump[J].Mechanical Systems and Signal Processing, 2017, 93: 460-493. DOI:10.1016/j.ymssp.2017.02.013.
[13] He X, Cai D, Yan S, et al. Neighborhood preserving embedding[C]//Tenth IEEE International Conference on Computer Vision(ICCV′05). Beijing, China, 2005:1-6. DOI:10.1109/iccv.2005.167.
[14] Miao A M, Ge Z Q, Song Z H, et al. Time neighborhood preserving embedding model and its application for fault detection[J].Industrial & Engineering Chemistry Research, 2013, 52(38): 13717-13729. DOI:10.1021/ie400854f.
[15] Miao A M, Song Z H, Wen Q J, et al. Process monitoring based on generalized orthogonal neighborhood preserving embedding[J].IFAC Proceedings Volumes, 2012, 45(15): 148-153. DOI:10.3182/20120710-4-sg-2026.00097.
[16] Golafshan R, Yuce Sanliturk K. SVD and Hankel matrix based de-noising approach for ball bearing fault detection and its assessment using artificial faults[J].Mechanical Systems and Signal Processing, 2016, 70-71: 36-50. DOI:10.1016/j.ymssp.2015.08.012.
[17] Su L M, He H S. Multi-attribute decision making method based on interval number of Spearman rank correlation coefficient [J]. Statistics and Decision, 2019, 6: 51-53.(in Chinese)
[18] Liu Y, Chen J, Pan Y N, Equipment performance degradation assessment based on SVDD and information fusion technology [J]. Vibration and Shock, 2009, 28: 21-24.(in Chinese)
[19] Nectoux P, Gouriveau R, Medjaher K, et al. PRONOSTIA: An experimental platform for bearings accelerated life test [C]// IEEE International Conference on Prognostics and Health Management. Colorado, USA, 2012: 1-8.
[20] Li H, Wu X, Liu T, et al. Variational modal decomposition and improved adaptive resonance techniques in application of bearing fault feature extraction [J]. Vibration and Shock, 2018, 31(4):719-725.(in Chinese)