|Table of Contents|

[1] Liu Jing, Liu Nan, Pan Zhiwen, You Xiaohu, et al. Domain adaptive methods for device diversityin indoor localization [J]. Journal of Southeast University (English Edition), 2019, 35 (4): 424-430. [doi:10.3969/j.issn.1003-7985.2019.04.004]
Copy

Domain adaptive methods for device diversityin indoor localization()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
35
Issue:
2019 4
Page:
424-430
Research Field:
Information and Communication Engineering
Publishing date:
2019-12-30

Info

Title:
Domain adaptive methods for device diversityin indoor localization
Author(s):
Liu Jing Liu Nan Pan Zhiwen You Xiaohu
National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China
Keywords:
wireless local area networks indoor localization fingerprinting device diversity transfer learning correlation alignment
PACS:
TN929.5
DOI:
10.3969/j.issn.1003-7985.2019.04.004
Abstract:
To solve the problem of variations in radio frequency characteristics among different devices, transfer learning is applied to transform device diversity to domain adaptation in the indoor localization algorithm. A robust indoor localization algorithm based on the aligned fingerprints and ensemble learning called correlation alignment for localization(CALoc)is proposed with low computational complexity. The second-order statistical properties of fingerprints in the offline and online phase are needed to be aligned. The real-time online calibration method mitigates the impact of device heterogeneity largely. Without any time-consuming deep learning retraining process, CALoc online only needs 0.11 s. The effectiveness and efficiency of CALoc are verified by realistic experiments. The results show that compared to the traditional algorithms, a significant performance gain is achieved and that it achieves better positioning accuracy with a 19% improvement.

References:

[1] Zhang L Y, Ma L, Xu Y B, et al. Linear regression algorithm against device diversity for indoor WLAN localization system[C]// 2017 IEEE Global Communications Conference. Singapore, 2017. DOI:10.1109/glocom.2017.8254137.
[2] Mahtab Hossain A K M, Jin Y, Soh W S, et al. SSD: A robust RF location fingerprint addressing mobile devices’ heterogeneity[J]. IEEE Transactions on Mobile Computing, 2013, 12(1): 65-77. DOI:10.1109/tmc.2011.243.
[3] Sadiq S J. Device transparent rss-based indoor localization[D]. Toronto, Canada: University of Toronto, 2015.
[4] Jimenez E, Wei R Z. Indoor localization of ubiquitous heterogeneous devices[C]//Proceedings of the 2013 IEEE 17th International Conference on Computer Supported Cooperative Work in Design. Whistler, BC, Canada, 2013. DOI:10.1109/cscwd.2013.6581045.
[5] Wang Q. Kernel learning and applications in wireless localization [D]. New Jersey, USA: Rutgers University, 2016.
[6] Brouwers N, Zuniga M, Langendoen K. Incremental Wi-Fi scanning for energy-efficient localization[C]//2014 IEEE International Conference on Pervasive Computing and Communications. Budapest, Hungary, 2014. DOI:10.1109/percom.2014.6813956.
[7] Kjærgaard M B. Indoor location fingerprinting with heterogeneous clients[J]. Pervasive and Mobile Computing, 2011, 7(1): 31-43. DOI:10.1016/j.pmcj.2010.04.005.
[8] Laoudias C, Kolios P, Panayiotou C. Differential signal strength fingerprinting revisited[C]//2014 International Conference on Indoor Positioning and Indoor Navigation(IPIN). Busan, South Korea, 2014. DOI:10.1109/ipin.2014.7275465.
[9] Zou H, Huang B Q, Lu X X, et al. Standardizing location fingerprints across heterogeneous mobile devices for indoor localization[C]//2016 IEEE Wireless Communications and Networking Conference. Doha, Qatar, 2016. DOI:10.1109/wcnc.2016.7564800.
[10] Cheng W, Tan K, Omwando V, et al. RSS-ratio for enhancing performance of RSS-based applications[C]// Proceedings IEEE INFOCOM. Turin, Italy, 2013: 3075-3083.
[11] Li L Q, Shen G B, Zhao C S, et al. Experiencing and handling the diversity in data density and environmental locality in an indoor positioning service[C]//Proceedings of the 20th Annual International Conference on Mobile Computing and Networking. Maui, Hawaii, USA, 2014: 459-470. DOI:10.1145/2639108.2639118.
[12] Kim Y, Shin H, Cha H. Smartphone-based Wi-Fi pedestrian-tracking system tolerating the RSS variance problem[C]//2012 IEEE International Conference on Pervasive Computing and Communications. Lugano, Switzerland, 2012:11-19. DOI:10.1109/percom.2012.6199844.
[13] Li Y, Williams S, Moran B, et al. A probabilistic indoor localization system for heterogeneous devices[J]. IEEE Sensors Journal, 2019, 19(16): 6822-6832. DOI:10.1109/jsen.2019.2911707.
[14] Han S, Zhao C, Meng W X, et al. Cosine similarity based fingerprinting algorithm in WLAN indoor positioning against device diversity[C]//2015 IEEE International Conference on Communications. London, UK, 2015:2710–2714. DOI:10.1109/icc.2015.7248735.
[15] Sun Z, Chen Y Q, Qi J, et al. Adaptive localization through transfer learning in indoor Wi-Fi environment[C]//2008 Seventh International Conference on Machine Learning and Applications. San Diego, CA, USA, 2008: 331-336. DOI:10.1109/icmla.2008.53.
[16] Pan S J L, Zheng V W C, Yang Q, et al. Transfer learning for wifi-based indoor localization[R]. Palo Alto, USA: Association for the Advancement of Artificial Intelligence(AAAI)Workshop, 2008.
[17] Zou H, Zhou Y X, Jiang H, et al. Adaptive localization in dynamic indoor environments by transfer kernel learning[C]//2017 IEEE Wireless Communications and Networking Conference(WCNC). San Francisco, CA, USA, 2017. DOI:10.1109/wcnc.2017.7925444.
[18] Sanam T F, Godrich H. An improved CSI based device free indoor localization using machine learning based classification approach[C]//2018 26th European Signal Processing Conference (EUSIPCO). Rome, Italy, 2018. DOI:10.23919/eusipco.2018.8553394.
[19] Chen L H, Wu E H K, Jin M H, et al. Homogeneous features utilization to address the device heterogeneity problem in fingerprint localization[J]. IEEE Sensors Journal, 2014, 14(4): 998-1005. DOI:10.1109/jsen.2013.2290736.
[20] Sun B, Feng J, Saenko K. Return of frustratingly easy domain adaptation[C]//Thirtieth AAAI Conference on Artificial Intelligence. Phoenix, USA, 2016, 6:1-8.
[21] Cai J F, Candès E J, Shen Z. A singular value thresholding algorithm for matrix completion[J]. SIAM Journal on Optimization, 2010, 20(4):1956-1982. DOI:10.1137/080738970.

Memo

Memo:
Biographies: Liu Jing(1994—), female, graduate; Liu Nan(corresponding author), female, doctor, professor, nanliu@seu.edu.cn.
Foundation items: The National Key Research and Development Program of China(No.2018YFB1802400), the National Natural Science Foundation of China(No.61571123), the Research Fund of National Mobile Communications Research Laboratory, Southeast University(No.2020A03).
Citation: Liu Jing, Liu Nan, Pan Zhiwen, et al.Domain adaptive methods for device diversity in indoor localization [J].Journal of Southeast University(English Edition), 2019, 35(4):424-430.DOI:10.3969/j.issn.1003-7985.2019.04.004.
Last Update: 2019-12-20