[1] Zhang L Y, Ma L, Xu Y B, et al. Linear regression algorithm against device diversity for indoor WLAN localization system[C]// 2017 IEEE Global Communications Conference. Singapore, 2017. DOI:10.1109/glocom.2017.8254137.
[2] Mahtab Hossain A K M, Jin Y, Soh W S, et al. SSD: A robust RF location fingerprint addressing mobile devices’ heterogeneity[J]. IEEE Transactions on Mobile Computing, 2013, 12(1): 65-77. DOI:10.1109/tmc.2011.243.
[3] Sadiq S J. Device transparent rss-based indoor localization[D]. Toronto, Canada: University of Toronto, 2015.
[4] Jimenez E, Wei R Z. Indoor localization of ubiquitous heterogeneous devices[C]//Proceedings of the 2013 IEEE 17th International Conference on Computer Supported Cooperative Work in Design. Whistler, BC, Canada, 2013. DOI:10.1109/cscwd.2013.6581045.
[5] Wang Q. Kernel learning and applications in wireless localization [D]. New Jersey, USA: Rutgers University, 2016.
[6] Brouwers N, Zuniga M, Langendoen K. Incremental Wi-Fi scanning for energy-efficient localization[C]//2014 IEEE International Conference on Pervasive Computing and Communications. Budapest, Hungary, 2014. DOI:10.1109/percom.2014.6813956.
[7] Kjærgaard M B. Indoor location fingerprinting with heterogeneous clients[J]. Pervasive and Mobile Computing, 2011, 7(1): 31-43. DOI:10.1016/j.pmcj.2010.04.005.
[8] Laoudias C, Kolios P, Panayiotou C. Differential signal strength fingerprinting revisited[C]//2014 International Conference on Indoor Positioning and Indoor Navigation(IPIN). Busan, South Korea, 2014. DOI:10.1109/ipin.2014.7275465.
[9] Zou H, Huang B Q, Lu X X, et al. Standardizing location fingerprints across heterogeneous mobile devices for indoor localization[C]//2016 IEEE Wireless Communications and Networking Conference. Doha, Qatar, 2016. DOI:10.1109/wcnc.2016.7564800.
[10] Cheng W, Tan K, Omwando V, et al. RSS-ratio for enhancing performance of RSS-based applications[C]// Proceedings IEEE INFOCOM. Turin, Italy, 2013: 3075-3083.
[11] Li L Q, Shen G B, Zhao C S, et al. Experiencing and handling the diversity in data density and environmental locality in an indoor positioning service[C]//Proceedings of the 20th Annual International Conference on Mobile Computing and Networking. Maui, Hawaii, USA, 2014: 459-470. DOI:10.1145/2639108.2639118.
[12] Kim Y, Shin H, Cha H. Smartphone-based Wi-Fi pedestrian-tracking system tolerating the RSS variance problem[C]//2012 IEEE International Conference on Pervasive Computing and Communications. Lugano, Switzerland, 2012:11-19. DOI:10.1109/percom.2012.6199844.
[13] Li Y, Williams S, Moran B, et al. A probabilistic indoor localization system for heterogeneous devices[J]. IEEE Sensors Journal, 2019, 19(16): 6822-6832. DOI:10.1109/jsen.2019.2911707.
[14] Han S, Zhao C, Meng W X, et al. Cosine similarity based fingerprinting algorithm in WLAN indoor positioning against device diversity[C]//2015 IEEE International Conference on Communications. London, UK, 2015:2710–2714. DOI:10.1109/icc.2015.7248735.
[15] Sun Z, Chen Y Q, Qi J, et al. Adaptive localization through transfer learning in indoor Wi-Fi environment[C]//2008 Seventh International Conference on Machine Learning and Applications. San Diego, CA, USA, 2008: 331-336. DOI:10.1109/icmla.2008.53.
[16] Pan S J L, Zheng V W C, Yang Q, et al. Transfer learning for wifi-based indoor localization[R]. Palo Alto, USA: Association for the Advancement of Artificial Intelligence(AAAI)Workshop, 2008.
[17] Zou H, Zhou Y X, Jiang H, et al. Adaptive localization in dynamic indoor environments by transfer kernel learning[C]//2017 IEEE Wireless Communications and Networking Conference(WCNC). San Francisco, CA, USA, 2017. DOI:10.1109/wcnc.2017.7925444.
[18] Sanam T F, Godrich H. An improved CSI based device free indoor localization using machine learning based classification approach[C]//2018 26th European Signal Processing Conference (EUSIPCO). Rome, Italy, 2018. DOI:10.23919/eusipco.2018.8553394.
[19] Chen L H, Wu E H K, Jin M H, et al. Homogeneous features utilization to address the device heterogeneity problem in fingerprint localization[J]. IEEE Sensors Journal, 2014, 14(4): 998-1005. DOI:10.1109/jsen.2013.2290736.
[20] Sun B, Feng J, Saenko K. Return of frustratingly easy domain adaptation[C]//Thirtieth AAAI Conference on Artificial Intelligence. Phoenix, USA, 2016, 6:1-8.
[21] Cai J F, Candès E J, Shen Z. A singular value thresholding algorithm for matrix completion[J]. SIAM Journal on Optimization, 2010, 20(4):1956-1982. DOI:10.1137/080738970.