|Table of Contents|

[1] Du Peng, Zhang Yuan,. A virtual delay queue-based backpressure schedulingfor multi-cell cellular edge computing systems [J]. Journal of Southeast University (English Edition), 2019, 35 (4): 440-446. [doi:10.3969/j.issn.1003-7985.2019.04.006]
Copy

A virtual delay queue-based backpressure schedulingfor multi-cell cellular edge computing systems()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
35
Issue:
2019 4
Page:
440-446
Research Field:
Information and Communication Engineering
Publishing date:
2019-12-30

Info

Title:
A virtual delay queue-based backpressure schedulingfor multi-cell cellular edge computing systems
Author(s):
Du Peng1 Zhang Yuan2
1College of Automation & College of Artificial Intelligence, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
2National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China
Keywords:
multi-cell cellular systems edge computing backpressure scheduling delay
PACS:
TN929.5
DOI:
10.3969/j.issn.1003-7985.2019.04.006
Abstract:
To further improve delay performance in multi-cell cellular edge computing systems, a new delay-driven joint communication and computing resource BP(backpressure)scheduling algorithm is proposed. Firstly, the mathematical models of the communication delay and computing delay in multi-cell cellular edge computing systems are established and expressed as virtual delay queues. Then, based on the virtual delay models, a novel joint wireless subcarrier and virtual machine resource scheduling algorithm is proposed to stabilize the virtual delay queues in the framework of the BP scheduling principle. Finally, the delay performance of the proposed virtual queue-based BP scheduling algorithm is evaluated via simulation experiments and compared with the traditional queue length-based BP scheduling algorithm. Results show that under the considered simulation parameters, the total delay of the proposed BP scheduling algorithm is always lower than that of the traditional queue length-based BP scheduling algorithm. The percentage of the reduced total delay can be as high as 51.29% when the computing resources are heterogeneously configured. Therefore, compared with the traditional queue length-based BP scheduling algorithms, the proposed virtual delay queue-based BP scheduling algorithm can further reduce delay in multi-cell cellular edge computing systems.

References:

[1] Tran T X, Hajisami A, Pandey P, et al. Collaborative mobile edge computing in 5G networks: New paradigms, scenarios, and challenges[J].IEEE Communications Magazine, 2017, 55(4): 54-61. DOI:10.1109/mcom.2017.1600863.
[2] Guo H Z, Liu J J, Zhang J. Computation offloading for multi-access mobile edge computing in ultra-dense networks[J].IEEE Communications Magazine, 2018, 56(8): 14-19. DOI:10.1109/mcom.2018.1701069.
[3] Dinh T Q, La Q D, Quek T Q S, et al. Learning for computation offloading in mobile edge computing[J].IEEE Transactions on Communications, 2018, 66(12): 6353-6367. DOI:10.1109/tcomm.2018.2866572.
[4] Wang F, Xu J, Wang X, et al. Joint offloading and computing optimization in wireless powered mobile-edge computing systems [J]. IEEE Transactions on Wireless Communications, 2018, 17(3): 1784-1797.DOI: 10.1109/TWC.2017.2785305.
[5] Wu Y, Ni K J, Zhang C, et al. NOMA-assisted multi-access mobile edge computing: A joint optimization of computation offloading and time allocation[J].IEEE Transactions on Vehicular Technology, 2018, 67(12): 12244-12258. DOI:10.1109/tvt.2018.2875337.
[6] Zhou J Z, Zhang X, Wang W B. Joint resource allocation and user association for heterogeneous services in multi-access edge computing networks[J].IEEE Access, 2019, 7: 12272-12282. DOI:10.1109/access.2019.2892466.
[7] Du J B, Zhao L Q, Chu X L, et al. Enabling low-latency applications in LTE-A based mixed fog/cloud computing systems[J].IEEE Transactions on Vehicular Technology, 2019, 68(2): 1757-1771. DOI:10.1109/tvt.2018.2882991.
[8] Guo S S, Wu D L, Zhang H X, et al. Resource modeling and scheduling for mobile edge computing: A service provider’s perspective[J].IEEE Access, 2018, 6: 35611-35623. DOI:10.1109/access.2018.2851392.
[9] Chen L X, Zhou S, Xu J. Computation peer offloading for energy-constrained mobile edge computing in small-cell networks[J].ACM Transactions on Networking, 2018, 26(4): 1619-1632.
[10] Ko S W, Han K F, Huang K B. Wireless networks for mobile edge computing: Spatial modeling and latency analysis[J].IEEE Transactions on Wireless Communications, 2018, 17(8): 5225-5240. DOI:10.1109/twc.2018.2840120.
[11] Fan Q, Ansari N. Application aware workload allocation for edge computing-based IoT[J].IEEE Internet of Things Journal, 2018, 5(3): 2146-2153. DOI:10.1109/jiot.2018.2826006.
[12] Yang L C, Zhang H L, Li M, et al. Mobile edge computing empowered energy efficient task offloading in 5G[J].IEEE Transactions on Vehicular Technology, 2018, 67(7): 6398-6409. DOI:10.1109/tvt.2018.2799620.
[13] Tassiulas L, Ephremides A. Stability properties of constrained queueing systems and scheduling policies for maximum throughput in multihop radio networks[J].IEEE Transactions on Automatic Control, 1992, 37(12): 1936-1948. DOI:10.1109/9.182479.
[14] Neely M J. Stochastic network optimization with application to communication and queueing systems[J].Synthesis Lectures on Communication Networks, 2010, 3(1): 1-211. DOI:10.2200/s00271ed1v01y201006cnt007.
[15] Lü X, Ni W, Tian H, et al. Optimal schedule of mobile edge computing for Internet of Things using partial information [J]. IEEE Journal on Selected Areas in Communications, 2017, 35(11): 2606-2615. DOI: 10.1109/JSAC.2017.2760186.
[16] Kim Y, Kwak J, Chong S. Dual-side optimization for cost-delay tradeoff in mobile edge computing[J].IEEE Transactions on Vehicular Technology, 2018, 67(2): 1765-1781. DOI:10.1109/tvt.2017.2762423.
[17] Feng H, Llorca J, Tulino A M, et al. Optimal control of wireless computing networks[J].IEEE Transactions on Wireless Communications, 2018, 17(12): 8283-8298. DOI:10.1109/twc.2018.2875740.
[18] Du J B, Yu F R, Chu X L, et al. Computation offloading and resource allocation in vehicular networks based on dual-side cost minimization[J].IEEE Transactions on Vehicular Technology, 2019, 68(2): 1079-1092. DOI:10.1109/tvt.2018.2883156.
[19] Kim Y, Lee H W, Chong S. Mobile computation offloading for application throughput fairness and energy efficiency[J].IEEE Transactions on Wireless Communications, 2019, 18(1): 3-19. DOI:10.1109/twc.2018.2868679.

Memo

Memo:
Biographies: Du Peng(1971—), male, doctor, lecturer; Zhang Yuan(corresponding author), male, doctor, associate professor, y.zhang@seu.edu.cn.
Foundation items: The National Natural Science Foundation of China(No.61571111), the Incubation Project of the National Natural Science Foundation of China at Nanjing University of Posts and Telecommunications(No.NY219106).
Citation: Du Peng, Zhang Yuan. A virtual delay queue-based backpressure scheduling for multi-cell cellular edge computing systems[J].Journal of Southeast University(English Edition), 2019, 35(4):440-446.DOI:10.3969/j.issn.1003-7985.2019.04.006.
Last Update: 2019-12-20