[1] Zhao L, Chen W Q, Lü C F. Symplectic elasticity for bi-directional functionally graded materials[J].Mechanics of Materials, 2012, 54: 32-42. DOI:10.1016/j.mechmat.2012.06.001.
[2] Naebe M, Shirvanimoghaddam K. Functionally graded materials: A review of fabrication and properties[J].Applied Materials Today, 2016, 5: 223-245. DOI:10.1016/j.apmt.2016.10.001.
[3] Kouzeli M, Mortensen A. Size dependent strengthening in particle reinforced aluminium[J].Acta Materialia, 2002, 50(1): 39-51. DOI:10.1016/s1359-6454(01)00327-5.
[4] Lam D C C, Yang F, Chong A C M, et al. Experiments and theory in strain gradient elasticity[J].Journal of the Mechanics and Physics of Solids, 2003, 51(8): 1477-1508. DOI:10.1016/s0022-5096(03)00053-x.
[5] Lim C W, Zhang G, Reddy J N. A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation[J].Journal of the Mechanics and Physics of Solids, 2015, 78: 298-313. DOI:10.1016/j.jmps.2015.02.001.
[6] Eringen A C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves[J].Journal of Applied Physics, 1983, 54(9): 4703-4710. DOI:10.1063/1.332803.
[7] Li L, Hu Y J, Li X B. Longitudinal vibration of size-dependent rods via nonlocal strain gradient theory[J].International Journal of Mechanical Sciences, 2016, 115/116: 135-144. DOI:10.1016/j.ijmecsci.2016.06.011.
[8] Xu X J, Wang X C, Zheng M L, et al. Bending and buckling of nonlocal strain gradient elastic beams[J].Composite Structures, 2017, 160: 366-377. DOI:10.1016/j.compstruct.2016.10.038.
[9] Lu L, Guo X M, Zhao J Z. Size-dependent vibration analysis of nanobeams based on the nonlocal strain gradient theory[J].International Journal of Engineering Science, 2017, 116: 12-24. DOI:10.1016/j.ijengsci.2017.03.006.
[10] Zhang B, Shen H M, Liu J, et al. Deep postbuckling and nonlinear bending behaviors of nanobeams with nonlocal and strain gradient effects[J].Applied Mathematics and Mechanics, 2019, 40(4): 515-548. DOI:10.1007/s10483-019-2482-9.
[11] Ouakad H M, El-Borgi S, Mousavi S M, et al. Static and dynamic response of CNT nanobeam using nonlocal strain and velocity gradient theory[J].Applied Mathematical Modelling, 2018, 62: 207-222. DOI:10.1016/j.apm.2018.05.034.
[12] Farajpour A, Ghayesh M H, Farokhi H. Large-amplitude coupled scale-dependent behaviour of geometrically imperfect NSGT nanotubes[J].International Journal of Mechanical Sciences, 2019, 150: 510-525. DOI:10.1016/j.ijmecsci.2018.09.043.
[13] Lu L, Guo X M, Zhao J Z. A unified size-dependent plate model based on nonlocal strain gradient theory including surface effects[J].Applied Mathematical Modelling, 2019, 68: 583-602. DOI:10.1016/j.apm.2018.11.023.
[14] Li L, Li X B, Hu Y J. Free vibration analysis of nonlocal strain gradient beams made of functionally graded material[J].International Journal of Engineering Science, 2016, 102: 77-92. DOI:10.1016/j.ijengsci.2016.02.010.
[15] Li L, Hu Y J. Nonlinear bending and free vibration analyses of nonlocal strain gradient beams made of functionally graded material[J].International Journal of Engineering Science, 2016, 107: 77-97. DOI:10.1016/j.ijengsci.2016.07.011.
[16] Li L, Hu Y J. Post-buckling analysis of functionally graded nanobeams incorporating nonlocal stress and microstructure-dependent strain gradient effects[J].International Journal of Mechanical Sciences, 2017, 120: 159-170. DOI:10.1016/j.ijmecsci.2016.11.025.
[17] Tang H S, Li L, Hu Y J. Coupling effect of thickness and shear deformation on size-dependent bending of micro/nano-scale porous beams[J].Applied Mathematical Modelling, 2019, 66: 527-547. DOI:10.1016/j.apm.2018.09.027.
[18] Ebrahimi F, Barati M R. A nonlocal strain gradient refined beam model for buckling analysis of size-dependent shear-deformable curved FG nanobeams[J].Composite Structures, 2017, 159: 174-182. DOI:10.1016/j.compstruct.2016.09.058.
[19] Sahmani S, Aghdam M M. Nonlocal strain gradient beam model for nonlinear vibration of prebuckled and postbuckled multilayer functionally graded GPLRC nanobeams[J].Composite Structures, 2017, 179: 77-88. DOI:10.1016/j.compstruct.2017.07.064.
[20] Lü Z, Liu H. Nonlinear bending response of functionally graded nanobeams with material uncertainties[J].International Journal of Mechanical Sciences, 2017, 134: 123-135. DOI:10.1016/j.ijmecsci.2017.10.008.
[21] Lü Z, Qiu Z P, Zhu J J, et al. Nonlinear free vibration analysis of defective FG nanobeams embedded in elastic medium[J].Composite Structures, 2018, 202: 675-685. DOI:10.1016/j.compstruct.2018.03.068.
[22] Al-Shujairi M, Mollamahmutoˇ/glu Ç. Dynamic stability of sandwich functionally graded micro-beam based on the nonlocal strain gradient theory with thermal effect[J].Composite Structures, 2018, 201: 1018-1030. DOI:10.1016/j.compstruct.2018.06.035.
[23] Al-Shujairi M, Mollamahmutoˇ/glu Ç. Buckling and free vibration analysis of functionally graded sandwich micro-beams resting on elastic foundation by using nonlocal strain gradient theory in conjunction with higher order shear theories under thermal effect[J].Composites Part B: Engineering, 2018, 154: 292-312. DOI:10.1016/j.compositesb.2018.08.103.
[24] Ghayesh M H, Farokhi H, Gholipour A, et al. Nonlinear bending and forced vibrations of axially functionally graded tapered microbeams[J].International Journal of Engineering Science, 2017, 120: 51-62. DOI:10.1016/j.ijengsci.2017.03.010.
[25] Rajasekaran S, Khaniki H B. Bending, buckling and vibration of small-scale tapered beams[J].International Journal of Engineering Science, 2017, 120: 172-188. DOI:10.1016/j.ijengsci.2017.08.005.
[26] Khaniki H B, Hosseini-Hashemi S, Nezamabadi A. Buckling analysis of nonuniform nonlocal strain gradient beams using generalized differential quadrature method[J].Alexandria Engineering Journal, 2018, 57(3): 1361-1368. DOI:10.1016/j.aej.2017.06.001.
[27] Li X B, Li L, Hu Y J, et al. Bending, buckling and vibration of axially functionally graded beams based on nonlocal strain gradient theory[J].Composite Structures, 2017, 165: 250-265. DOI:10.1016/j.compstruct.2017.01.032.
[28] Karami B, Janghorban M. On the dynamics of porous nanotubes with variable material properties and variable thickness[J].International Journal of Engineering Science, 2019, 136: 53-66. DOI:10.1016/j.ijengsci.2019.01.002.