|Table of Contents|

[1] Kang Zetian, Wang Zhiyong, Zhou Bo, Xue Shifeng, et al. Study on size-dependent bending behavior of axially functionallygraded microbeams via nonlocal strain gradient theory [J]. Journal of Southeast University (English Edition), 2019, 35 (4): 453-463. [doi:10.3969/j.issn.1003-7985.2019.04.008]
Copy

Study on size-dependent bending behavior of axially functionallygraded microbeams via nonlocal strain gradient theory()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
35
Issue:
2019 4
Page:
453-463
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2019-12-30

Info

Title:
Study on size-dependent bending behavior of axially functionallygraded microbeams via nonlocal strain gradient theory
Author(s):
Kang Zetian Wang Zhiyong Zhou Bo Xue Shifeng
College of Pipeline and Civil Engineering, China University of Petroleum(East China), Qingdao 266580, China
Keywords:
axially functionally graded microbeam nonlocal strain gradient theory bending Galerkin method normalization method
PACS:
O341
DOI:
10.3969/j.issn.1003-7985.2019.04.008
Abstract:
Based on the nonlocal strain gradient theory(NSGT), the static bending behaviors of an axially functionally graded(AFG)Bernoulli-Euler microbeam subjected to concentrated and distributed loads are studied. The material property of the AFG microbeam changes continuously along the longitudinal direction. On the basis of the minimum potential energy principle, the equations of motion and associated classical and non-classical boundary conditions are derived. Then, Galerkin’s weighted residual method in conjunction with the normalization technique are utilized to solve the governing differential equations. The transverse deformations of the AFG microbeam suffering the sinusoidal distributed load within the framework of NSGT, nonlocal elasticity theory(NET), strain gradient theory(SGT)and classical elasticity theory(CET)are compared. It is observed that the bending flexibility of the microbeam decreases with the increase in the ratio of the material length scale parameter to the beam height. However, the bending flexibility increases with the increase in the material nonlocal parameter. The functionally graded parameter plays an important role in controlling the transverse deformation. This study provides a theoretical basis and a technical reference for the design and analysis of AFG micro-beams in the related regions.

References:

[1] Zhao L, Chen W Q, Lü C F. Symplectic elasticity for bi-directional functionally graded materials[J].Mechanics of Materials, 2012, 54: 32-42. DOI:10.1016/j.mechmat.2012.06.001.
[2] Naebe M, Shirvanimoghaddam K. Functionally graded materials: A review of fabrication and properties[J].Applied Materials Today, 2016, 5: 223-245. DOI:10.1016/j.apmt.2016.10.001.
[3] Kouzeli M, Mortensen A. Size dependent strengthening in particle reinforced aluminium[J].Acta Materialia, 2002, 50(1): 39-51. DOI:10.1016/s1359-6454(01)00327-5.
[4] Lam D C C, Yang F, Chong A C M, et al. Experiments and theory in strain gradient elasticity[J].Journal of the Mechanics and Physics of Solids, 2003, 51(8): 1477-1508. DOI:10.1016/s0022-5096(03)00053-x.
[5] Lim C W, Zhang G, Reddy J N. A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation[J].Journal of the Mechanics and Physics of Solids, 2015, 78: 298-313. DOI:10.1016/j.jmps.2015.02.001.
[6] Eringen A C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves[J].Journal of Applied Physics, 1983, 54(9): 4703-4710. DOI:10.1063/1.332803.
[7] Li L, Hu Y J, Li X B. Longitudinal vibration of size-dependent rods via nonlocal strain gradient theory[J].International Journal of Mechanical Sciences, 2016, 115/116: 135-144. DOI:10.1016/j.ijmecsci.2016.06.011.
[8] Xu X J, Wang X C, Zheng M L, et al. Bending and buckling of nonlocal strain gradient elastic beams[J].Composite Structures, 2017, 160: 366-377. DOI:10.1016/j.compstruct.2016.10.038.
[9] Lu L, Guo X M, Zhao J Z. Size-dependent vibration analysis of nanobeams based on the nonlocal strain gradient theory[J].International Journal of Engineering Science, 2017, 116: 12-24. DOI:10.1016/j.ijengsci.2017.03.006.
[10] Zhang B, Shen H M, Liu J, et al. Deep postbuckling and nonlinear bending behaviors of nanobeams with nonlocal and strain gradient effects[J].Applied Mathematics and Mechanics, 2019, 40(4): 515-548. DOI:10.1007/s10483-019-2482-9.
[11] Ouakad H M, El-Borgi S, Mousavi S M, et al. Static and dynamic response of CNT nanobeam using nonlocal strain and velocity gradient theory[J].Applied Mathematical Modelling, 2018, 62: 207-222. DOI:10.1016/j.apm.2018.05.034.
[12] Farajpour A, Ghayesh M H, Farokhi H. Large-amplitude coupled scale-dependent behaviour of geometrically imperfect NSGT nanotubes[J].International Journal of Mechanical Sciences, 2019, 150: 510-525. DOI:10.1016/j.ijmecsci.2018.09.043.
[13] Lu L, Guo X M, Zhao J Z. A unified size-dependent plate model based on nonlocal strain gradient theory including surface effects[J].Applied Mathematical Modelling, 2019, 68: 583-602. DOI:10.1016/j.apm.2018.11.023.
[14] Li L, Li X B, Hu Y J. Free vibration analysis of nonlocal strain gradient beams made of functionally graded material[J].International Journal of Engineering Science, 2016, 102: 77-92. DOI:10.1016/j.ijengsci.2016.02.010.
[15] Li L, Hu Y J. Nonlinear bending and free vibration analyses of nonlocal strain gradient beams made of functionally graded material[J].International Journal of Engineering Science, 2016, 107: 77-97. DOI:10.1016/j.ijengsci.2016.07.011.
[16] Li L, Hu Y J. Post-buckling analysis of functionally graded nanobeams incorporating nonlocal stress and microstructure-dependent strain gradient effects[J].International Journal of Mechanical Sciences, 2017, 120: 159-170. DOI:10.1016/j.ijmecsci.2016.11.025.
[17] Tang H S, Li L, Hu Y J. Coupling effect of thickness and shear deformation on size-dependent bending of micro/nano-scale porous beams[J].Applied Mathematical Modelling, 2019, 66: 527-547. DOI:10.1016/j.apm.2018.09.027.
[18] Ebrahimi F, Barati M R. A nonlocal strain gradient refined beam model for buckling analysis of size-dependent shear-deformable curved FG nanobeams[J].Composite Structures, 2017, 159: 174-182. DOI:10.1016/j.compstruct.2016.09.058.
[19] Sahmani S, Aghdam M M. Nonlocal strain gradient beam model for nonlinear vibration of prebuckled and postbuckled multilayer functionally graded GPLRC nanobeams[J].Composite Structures, 2017, 179: 77-88. DOI:10.1016/j.compstruct.2017.07.064.
[20] Lü Z, Liu H. Nonlinear bending response of functionally graded nanobeams with material uncertainties[J].International Journal of Mechanical Sciences, 2017, 134: 123-135. DOI:10.1016/j.ijmecsci.2017.10.008.
[21] Lü Z, Qiu Z P, Zhu J J, et al. Nonlinear free vibration analysis of defective FG nanobeams embedded in elastic medium[J].Composite Structures, 2018, 202: 675-685. DOI:10.1016/j.compstruct.2018.03.068.
[22] Al-Shujairi M, Mollamahmutoˇ/glu Ç. Dynamic stability of sandwich functionally graded micro-beam based on the nonlocal strain gradient theory with thermal effect[J].Composite Structures, 2018, 201: 1018-1030. DOI:10.1016/j.compstruct.2018.06.035.
[23] Al-Shujairi M, Mollamahmutoˇ/glu Ç. Buckling and free vibration analysis of functionally graded sandwich micro-beams resting on elastic foundation by using nonlocal strain gradient theory in conjunction with higher order shear theories under thermal effect[J].Composites Part B: Engineering, 2018, 154: 292-312. DOI:10.1016/j.compositesb.2018.08.103.
[24] Ghayesh M H, Farokhi H, Gholipour A, et al. Nonlinear bending and forced vibrations of axially functionally graded tapered microbeams[J].International Journal of Engineering Science, 2017, 120: 51-62. DOI:10.1016/j.ijengsci.2017.03.010.
[25] Rajasekaran S, Khaniki H B. Bending, buckling and vibration of small-scale tapered beams[J].International Journal of Engineering Science, 2017, 120: 172-188. DOI:10.1016/j.ijengsci.2017.08.005.
[26] Khaniki H B, Hosseini-Hashemi S, Nezamabadi A. Buckling analysis of nonuniform nonlocal strain gradient beams using generalized differential quadrature method[J].Alexandria Engineering Journal, 2018, 57(3): 1361-1368. DOI:10.1016/j.aej.2017.06.001.
[27] Li X B, Li L, Hu Y J, et al. Bending, buckling and vibration of axially functionally graded beams based on nonlocal strain gradient theory[J].Composite Structures, 2017, 165: 250-265. DOI:10.1016/j.compstruct.2017.01.032.
[28] Karami B, Janghorban M. On the dynamics of porous nanotubes with variable material properties and variable thickness[J].International Journal of Engineering Science, 2019, 136: 53-66. DOI:10.1016/j.ijengsci.2019.01.002.

Memo

Memo:
Biographies: Kang Zetian(1992— ), male, Ph. D. candidate; Zhou Bo(corresponding author), male, doctor, professor, zhoubo@upc.edu.cn.
Foundation items: The National Key Research and Development Program of China(No.2017YFC0307604), the Talent Foundation of China University of Petroleum(No.Y1215042).
Citation: Kang Zetian, Wang Zhiyong, Zhou Bo, et al.Study on size-dependent bending behavior of axially functionally graded microbeams via nonlocal strain gradient theory[J].Journal of Southeast University(English Edition), 2019, 35(4):453-463.DOI:10.3969/j.issn.1003-7985.2019.04.008.
Last Update: 2019-12-20