|Table of Contents|

[1] Gu Yue, Wang Wei, Wang Shuanhong,. Galois linear maps and their construction [J]. Journal of Southeast University (English Edition), 2019, 35 (4): 522-526. [doi:10.3969/j.issn.1003-7985.2019.04.016]
Copy

Galois linear maps and their construction()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
35
Issue:
2019 4
Page:
522-526
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2019-12-30

Info

Title:
Galois linear maps and their construction
Author(s):
Gu Yue1 Wang Wei2 Wang Shuanhong1
1School of Mathematics, Southeast University, Nanjing 211189, China
2Nanjing Research Institute of Electronic Engineering, Nanjing 210007, China
Keywords:
Galois linear map antipode Hopf algebra Hopf(co)quasigroup
PACS:
O153.5
DOI:
10.3969/j.issn.1003-7985.2019.04.016
Abstract:
The condition of an algebra to be a Hopf algebra or a Hopf(co)quasigroup can be determined by the properties of Galois linear maps. For a bialgebra H, if it is unital and associative as an algebra and counital coassociative as a coalgebra, then the Galois linear maps T1 and T2 can be defined. For such a bialgebra H, it is a Hopf algebra if and only if T1 is bijective. Moreover, T-11 is a right H-module map and a left H-comodule map(similar to T2). On the other hand, for a unital algebra( no need to be associative), and a counital coassociative coalgebra A, if the coproduct and counit are both algebra morphisms, then the sufficient and necessary condition of A to be a Hopf quasigroup is that T1 is bijective, and T-11 is left compatible with ΔrrT-11 and right compatible with mlT-11 at the same time(The properties are similar to T2). Furthermore, as a corollary, the quasigroups case is also considered.

References:

[1] Sweedler M E. Hopf algebras[M]. New York:W.A.Benjamin, 1969.
[2] Voigt C.Bornological quantum groups[J]. Pacific Journal of Mathematics, 2008, 235(1): 93-135. DOI:10.2140/pjm.2008.235.93.
[3] van Daele A. Multiplier Hopf algebras[J]. Transactions of the American Mathematical Society, 1994, 342(2): 917-932. DOI:10.1090/s0002-9947-1994-1220906-5.
[4] Montgomery S.Hopf algebras and their actions on rings[M]. Providence, Rhode Island: American Mathematical Society, 1993. DOI:10.1090/cbms/082.
[5] Albert A A. Quasigroups. Ⅰ[J]. Transaction of the American Mathematical Society, 1943, 54: 507-519.
[6] Alonso Álvarez J N, Fernández Vilaboa J M, González Rodríguez R, et al. Projections and Yetter-Drinfel’d modules over Hopf(co)quasigroups[J]. Journal of Algebra, 2015, 443: 153-199. DOI:10.1016/j.jalgebra.2015.07.007.
[7] Klim J, Majid S. Hopf quasigroups and the algebraic 7-sphere[J]. Journal of Algebra, 2010, 323(11): 3067-3110. DOI:10.1016/j.jalgebra.2010.03.011.
[8] Brzeziński T, Jiao Z M. Actions of Hopf quasigroups[J]. Communications in Algebra, 2012, 40(2): 681-696. DOI:10.1080/00927872.2010.535588.

Memo

Memo:
Biographies: Gu Yue(1992—), female, graduate; Wang Shuanhong(corresponding author), male, doctor, professor, shuanhwang@seu.edu.cn.
Foundation items: The National Natural Science Foundation of China(No.11371088, 11571173, 11871144), the Natural Science Foundation of Jiangsu Province(No.BK20171348).
Citation: Gu Yue, Wang Wei, Wang Shuanhong. Galois linear maps and their construction[J].Journal of Southeast University(English Edition), 2019, 35(4):522-526.DOI:10.3969/j.issn.1003-7985.2019.04.016.
Last Update: 2019-12-20