[1] Akay A. Acoustics of friction[J]. The Journal of the Acoustical Society of America, 2002, 111(4): 1525-1548. DOI:10.1121/1.1456514.
[2] Suzuki H, Miura R. The jerking motion in servomechanisms, considering negative slope of friction characteristics[J]. Transactions of the Institute of Electrical Engineers of Japan A, 1967, 87(Supp S1): 1321-1330.
[3] Spurr R T. A theory of brake squeal[J]. Proceedings of the Institution of Mechanical Engineers: Automobile Division, 1961, 15(1): 33-52. DOI:10.1243/pime_auto_1961_000_009_02.
[4] Popp K, Stelter P. Stick-slip vibrations and chaos[J]. Philosophical Transactions of the Royal Society of London Series A: Physical and Engineering Sciences, 1990, 332(1624): 89-105. DOI:10.1098/rsta.1990.0102.
[5] Hoffmann N, Gaul L. Effects of damping on mode-coupling instability in friction induced oscillations[J]. ZAMM, 2003, 83(8): 524-534. DOI:10.1002/zamm.200310022.
[6] Crowther A R, Singh R. Analytical investigation of stick-slip motions in coupled brake-driveline systems[J]. Nonlinear Dynamics, 2007, 50(3): 463-481. DOI:10.1007/s11071-006-9187-9.
[7] Giannini O, Massi F. Characterization of the high-frequency squeal on a laboratory brake setup[J]. Journal of Sound and Vibration, 2008, 310(1/2): 394-408. DOI:10.1016/j.jsv.2007.08.009.
[8] Devarajan K, Balaram B. Analytical approximations for stick-slip amplitudes and frequency of duffing oscillator[J]. Journal of Computational and Nonlinear Dynamics, 2017, 12(4): 044501. DOI:10.1115/1.4034734.
[9] Abdo J, Abouelsoud A A. Analytical approach to estimate amplitude of stick-slip oscillations[J]. Journal of Theoretical and Applied Mechanics, 2011, 49(4): 971-986.
[10] Niknam A, Farhang K. Vibration instability in a large motion bistable compliant mechanism due to stribeck friction[J]. Journal of Vibration and Acoustics, 2018, 140(6): 061017. DOI:10.1115/1.4040513.
[11] Xiang W, Yan S Z, Wu J N. Dynamic analysis of planar mechanical systems considering stick-slip and Stribeck effect in revolute clearance joints[J]. Nonlinear Dynamics, 2019, 95(1): 321-341. DOI:10.1007/s11071-018-4566-6.
[12] Ouyang H, Mottershead J E, Cartmell M P, et al. Friction-induced vibration of an elastic slider on a vibrating disc[J]. International Journal of Mechanical Sciences, 1999, 41(3): 325-336. DOI:10.1016/s0020-7403(98)00059-9.
[13] Ouyang H, Mottershead J E. Dynamic instability of an elastic disk under the action of a rotating friction couple[J]. Journal of Applied Mechanics, 2004, 71(6): 753-758. DOI:10.1115/1.1795815.
[14] Kang J. Theoretical model for friction-induced vibration of ball joint system under mode-coupling instability[J]. Tribology Transactions, 2015, 58(5): 807-814. DOI:10.1080/10402004.2015.1020121.
[15] Sui X, Ding Q. Instability and stochastic analyses of a pad-on-disc frictional system in moving interactions[J]. Nonlinear Dynamics, 2018, 93(3): 1619-1634. DOI:10.1007/s11071-018-4280-4.
[16] Pohrt R, Popov V L. Normal contact stiffness of elastic solids with fractal rough surfaces[J]. Physical Review Letters, 2012, 108(10): 104301. DOI:10.1103/physrevlett.108.104301.
[17] Guan D, Jing L, Hilton H H, et al. Tangential contact analysis of spherical pump based on fractal theory[J]. Tribology International, 2018, 119: 531-538. DOI:10.1016/j.triboint.2017.11.034.
[18] Sun Y Y, Xiao H F, Xu J W, et al. Study on the normal contact stiffness of the fractal rough surface in mixed lubrication[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2018, 232(12): 1604-1617. DOI:10.1177/1350650118758741.
[19] Xiao H F, Sun Y Y, Chen Z G. Fractal modeling of normal contact stiffness for rough surface contact considering the elastic-plastic deformation[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41: No.11. DOI:10.1007/s40430-018-1513-x.
[20] Liu P, Zhao H, Huang K, et al. Research on normal contact stiffness of rough surface considering friction based on fractal theory[J]. Applied Surface Science, 2015, 349: 43-48. DOI:10.1016/j.apsusc.2015.04.174.
[21] Pan W J, Li X P, Wang L L, et al. A normal contact stiffness fractal prediction model of dry-friction rough surface and experimental verification[J]. European Journal of Mechanics-A, 2017, 66: 94-102. DOI:10.1016/j.euromechsol.2017.06.010.
[22] Awrejcewicz J, Olejnik P. Analysis of dynamic systems with various friction laws[J]. Applied Mechanics Reviews, 2005, 58(6): 389-411. DOI:10.1115/1.2048687.
[23] Armstrong-Hélouvry B, Soom A. Control of machines with friction[J]. Journal of Tribology, 1992, 114(3): 637. DOI:10.1115/1.2920929.
[24] Majumdar A, Bhushan B. Fractal model of elastic-plastic contact between rough surfaces[J]. Journal of Tribology, 1991, 113(1): 1-11. DOI:10.1115/1.2920588.
[25] Liu W J, Tang F S. Modeling a simplified regulatory system of blood glucose at molecular levels[J]. Journal of Theoretical Biology, 2008, 252(4): 608-620. DOI:10.1016/j.jtbi.2008.02.021.
[26] Guan Z Z, Ye M H, Yin X C, et al. Recognition of surface roughness based on fractal theory and the microscopic images[J]. Applied Mechanics and Materials, 2012, 241/242/243/244: 3030-3033. DOI:10.4028/www.scientific.net/amm.241-244.3030.
[27] Pan Y L, Wu L Q, Zhang Y D. Study of the relationship between fractal model parameters and roughness parameter ra[J]. Engineering Science, 2004, 6(5): 49-51.(in Chinese)