[1] Wang T, Gao H J, Qiu J B. A combined adaptive neural network and nonlinear model predictive control for multirate networked industrial process control[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(2): 416-425. DOI:10.1109/tnnls.2015.2411671.
[2] Yuan X F, Ge Z Q, Song Z H. Soft sensor model development in multiphase/multimode processes based on Gaussian mixture regression[J]. Chemometrics and Intelligent Laboratory Systems, 2014, 138: 97-109. DOI:10.1016/j.chemolab.2014.07.013.
[3] Zheng J H, Song Z H. Semisupervised learning for probabilistic partial least squares regression model and soft sensor application[J]. Journal of Process Control, 2018, 64: 123-131. DOI:10.1016/j.jprocont.2018.01.008.
[4] Popli K, Afacan A, Liu Q, et al. Development of online soft sensors and dynamic fundamental model-based process monitoring for complex sulfide ore flotation[J]. Minerals Engineering, 2018, 124: 10-27. DOI:10.1016/j.mineng.2018.04.006.
[5] Sun Y M, Wang Y L, Liu X G, et al. A novel Bayesian inference soft sensor for real-time statistic learning modeling for industrial polypropylene melt index prediction[J]. Journal of Applied Polymer Science, 2017, 134(40): 45384. DOI:10.1002/app.45384.
[6] Wang F F, Li P F, Mi J C, et al. A refined global reaction mechanism for modeling coal combustion under moderate or intense low-oxygen dilution condition[J]. Energy, 2018, 157: 764-777. DOI:10.1016/j.energy.2018.05.194.
[7] Bala Subramaniyan A, Pan R, Kuitche J, et al. Quantification of environmental effects on PV module degradation: A physics-based data-driven modeling method[J]. IEEE Journal of Photovoltaics, 2018, 8(5): 1289-1296. DOI:10.1109/jphotov.2018.2850527.
[8] Wang X X, Hu H L, Jia H Q, et al. SVM-based multisensor data fusion for phase concentration measurement in biomass-coal co-combustion[J]. Review of Scientific Instruments, 2018, 89(5): 055106. DOI:10.1063/1.5007100.
[9] Ge Z Q. Active probabilistic sample selection for intelligent soft sensing of industrial processes[J]. Chemometrics and Intelligent Laboratory Systems, 2016, 151: 181-189. DOI:10.1016/j.chemolab.2016.01.003.
[10] Li G Q, Chen B, Chan K C C, et al. Modeling thermal efficiency of a 300 MW coal-fired boiler by online least square fast learning network[J]. Journal of Chemical Engineering of Japan, 2018, 51(1): 100-106. DOI:10.1252/jcej.17we114.
[11] Mohanraj M, Jayaraj S, Muraleedharan C. Applications of artificial neural networks for refrigeration, air-conditioning and heat pump systems: A review[J]. Renewable and Sustainable Energy Reviews, 2012, 16(2): 1340-1358. DOI:10.1016/j.rser.2011.10.015.
[12] Naveen Kumar V, Lakshmi Narayana K V. Development of thermistor signal conditioning circuit using artificial neural networks[J]. IET Science, Measurement & Technology, 2015, 9(8): 955-961. DOI:10.1049/iet-smt.2015.0008.
[13] Hansen L K, Salamon P. Neural network ensembles[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(10): 993-1001. DOI:10.1109/34.58871.
[14] Pham B T, Shirzadi A, Tien Bui D, et al. A hybrid machine learning ensemble approach based on a Radial Basis Function neural network and Rotation Forest for landslide susceptibility modeling: A case study in the Himalayan area, India[J]. International Journal of Sediment Research, 2018, 33(2): 157-170. DOI:10.1016/j.ijsrc.2017.09.008.
[15] Samiee K, Iosifidis A, Gabbouj M. On the comparison of random and Hebbian weights for the training of single-hidden layer feedforward neural networks[J]. Expert Systems with Applications, 2017, 83: 177-186. DOI:10.1016/j.eswa.2017.04.025.
[16] Li G Q, Niu P F, Duan X L, et al. Fast learning network: a novel artificial neural network with a fast learning speed[J]. Neural Computing and Applications, 2014, 24(7/8): 1683-1695. DOI:10.1007/s00521-013-1398-7.
[17] Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: Theory and applications[J]. Neurocomputing, 2006, 70(1/2/3): 489-501. DOI:10.1016/j.neucom.2005.12.126.
[18] Huang G B, Wang D H, Lan Y. Extreme learning machines: A survey[J]. International Journal of Machine Learning and Cybernetics, 2011, 2(2): 107-122. DOI:10.1007/s13042-011-0019-y.
[19] Fortuna L, Graziani S, Xibilia M G. Soft sensors for product quality monitoring in debutanizer distillation columns[J]. Control Engineering Practice, 2005, 13(4): 499-508. DOI:10.1016/j.conengprac.2004.04.013.
[20] Shao W M. Research on adaptive soft sensing modeling method based on local learning [D]. Qingdao: China University of Petroleum, 2016.(in Chinese)
[21] Wu X, Shen J, Sun S Z, et al. Data-driven disturbance rejection predictive control for SCR denitrification system[J]. Industrial & Engineering Chemistry Research, 2016, 55(20): 5923-5930. DOI:10.1021/acs.iecr.5b03468.