|Table of Contents|

[1] Yang Xiaoyan, Wu Jing, Pang Xixi, Wang Qiang, et al. Higher mode effects in hinged wall with BRBsin base-frame structures using distributed parameter models [J]. Journal of Southeast University (English Edition), 2020, 36 (1): 56-66. [doi:10.3969/j.issn.1003-7985.2020.01.008]
Copy

Higher mode effects in hinged wall with BRBsin base-frame structures using distributed parameter models()
采用分布参数模型考虑高阶模态对底部带BRBs 的铰支墙-框架结构的影响
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
36
Issue:
2020 1
Page:
56-66
Research Field:
Civil Engineering
Publishing date:
2020-03-20

Info

Title:
Higher mode effects in hinged wall with BRBsin base-frame structures using distributed parameter models
采用分布参数模型考虑高阶模态对底部带BRBs 的铰支墙-框架结构的影响
Author(s):
Yang Xiaoyan1 Wu Jing1 Pang Xixi2 Wang Qiang3 Zhang Meng4
1Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, Southeast University, Nanjing 211189, China
2Xuzhou Survey and Design Center, State Grid Economic and Technological Research Institute Co., Ltd., Xuzhou 221005, China
3Hong Kong Huayi Design Consultants(Shenzhen)Ltd., Shenzhen 518057, China
4Baosheng Integrated System Technology Co. Ltd., Baoying 225000, China
杨晓燕1 吴京1 庞熙熙2 王强3 张萌4
1东南大学混凝土及预应力混凝土结构教育部重点实验室, 南京 211189; 2国网经济技术研究院有限公司徐州勘测设计中心, 徐州 221005; 3香港华艺设计顾问(深圳)有限公司, 深圳 518057; 4宝胜系统集成科技股份有限公司, 宝应 225000
Keywords:
hinged wall higher mode effects flexural beam rotational spring rotational stiffness ratio
铰支墙 高阶模态 弯曲梁 转动弹簧 转动刚度比
PACS:
TU352.1
DOI:
10.3969/j.issn.1003-7985.2020.01.008
Abstract:
To investigate the effect of higher modes on the displacement and inner forces in HWBB(hinged wall with buckling-restrained braces in base)-frame structure, distributed parameter models for both the HWBB-hinged frame structure and the HWBB-MRF(moment resisting frame)structure are built. The hinged wall is simplified as a flexural beam. BRBs(bucking-restrained braces)are simplified to a rotational spring. MRF is simplified to a shear beam. Vibration equations of distributed parameter models are derived. Natural periods, natural modes of vibration, inner forces and displacements of the distributed parameter models are derived based on the vibration equations using numerical methods. The effect of the relative stiffness ratio and the rotational stiffness ratio on the higher mode effects is investigated. For elastic structures, the global displacement and shear in MRF are predominantly controlled by the first mode, while the shear and bending moment in the wall are significantly affected by higher mode effects. The effect of the yielding of BRB on the inner forces distribution in the HWBB-hinged frame is investigated. The results indicate that the first mode will no longer contribute to the inner forces and the contribution from higher modes to inner forces increases after the BRBs yield. Displacement is not sensitive to higher mode effects and it is controlled by the first mode after the BRBs yield. Parameter analysis demonstrates that the displacement amplitudes are reduced with the increase in the flexural stiffness of the wall before the flexural stiffness reaches a certain value. The first three periods decrease with the increase in the rotational stiffness. With the increase in the rotational stiffness ratio, the contribution from the first mode decreases while contributions from both the second mode and third mode increase.
为了研究高阶模态对底部带BRB的铰支墙(HWBB)框架结构的影响, 建立了HWBB-铰接框架和HWBB-抗弯框架的分布参数模型.将铰支墙简化为弯曲梁、BRB简化为转角弹簧、抗弯框架简化为剪切梁.推导出2种分布参数模型的振动方程, 求出各阶周期、各个振型及内力和位移的数值解.研究了相对刚度比以及转动刚度比对高阶模态效应的影响.对于弹性结构, 整体位移及抗弯框架中的剪力由一阶模态控制, 而墙中的剪力和弯矩受高阶模态影响较大.同时研究了BRB屈服对HWBB-铰接框架结构内力分布的影响.结果表明:在BRB屈服后, 原一阶模态将不再对内力产生贡献, 而高阶模态对内力贡献作用将增加.但BRB屈服后位移对高阶模态不敏感、仍由一阶模态控制.参数分析表明:在墙的抗弯刚度达到一定值前, 随着墙抗弯刚度的增加, 结构的位移会逐渐减小;随着转动刚度的增加, 前三阶周期会减小;随着转动刚度比的增加, 一阶模态的基底剪力贡献系数减小, 但二阶和三阶模态的基底剪力贡献系数增加.

References:

[1] Alavi B, Krawinkler H. Strengthening of moment-resisting frame structures against near-fault ground motion effects [J]. Earthquake Engineering and Structural Dynamics, 2004, 33(6): 707-722. DOI:10.1002/eqe.370.
[2] Wada A, Qu Z, Ito H, et al. Seismic retrofit using rocking walls and steel dampers [C]//ATC and SEI Conference on Improving the Seismic Performance of Existing Buildings and Other Structures. San Francisco, USA, 2009: 1010-1021.
[3] Wada A, Qu Z, Sakata H. Seismic retrofit of existing SRC frames using rocking walls and steel dampers [J]. Frontiers of Architecture and Civil Engineering in China, 2011, 5(3): 259-266. DOI:10.1007/s11709-011-0114-x. (in Chinese)
[4] Qu Z, Wada A, Motoyui S, et al. Pin-supported walls for enhancing the seismic performance of building structures [J]. Earthquake Engineering and Structural Dynamics, 2012, 41(14): 2075- 2091.DOI:10.1002/eqe.2175.
[5] Janhunen B, Tipping S, Mar T. Seismic retrofit of a 1960s steel moment-frame highrise using a pivoting spine [C]//Proceedings of the Structural Engineering Association of California 82nd Annual Convention. San Diego, USA, 2013: 320-336.
[6] Makris N, Aghagholizadeh M. The dynamics of an elastic structure coupled with a rocking wall [J]. Earthquake Engineering and Structural Dynamics, 2017, 46(6): 945-962. DOI:10.1002/eqe.2838.
[7] Kurama Y, Sause R, Pessiki S. Lateral load behavior and seismic design of unbonded post-tensioned precast concrete walls [J]. ACI Structural Journal, 1999, 96(4):622-632. DOI:10.14359/700.
[8] Takeuchi T, Suzuki K. Performance-based design for truss-frame structures using energy dissipation devices [C]//Proceedings of the 4th International Conference on Behavior of Steel Structures in Seismic Areas. Naples, Italy, 2003: 55- 61.
[9] Takeuchi T, Chen X, Matsui R. Seismic performance of controlled spine frames with energy-dissipating members [J]. Journal of Constructional Steel Research, 2015, 114: 51-65. DOI:10.1016/j.jcsr.2015.07.002.
[10] Chen X, Takeuchi T, Matsui R. Simplified design procedure for controlled spine frames with energy-dissipating members [J]. Journal of Constructional Steel Research, 2017, 135: 242-252. DOI:10.1016/j.jcsr.2017.04.017.
[11] Chen X, Takeuchi T, Matsui R. Seismic performance and evaluation of controlled spine frames applied in high-rise buildings [J]. Earthquake Spectra, 2018, 34(3): 1431-1458.DOI:10.1193/080817eqs157m.
[12] Djojo G S, Clifton G C, Henry R S, et al. Experimental testing of a double acting ring spring system for use in rocking steel shear walls [C]//8th International Conference on Behavior of Steel Structures in Seismic Areas. Shanghai, China, 2015: 1245-1252.
[13] Du Y F, Wu D Y. Performance analysis of light energy dissipative rocking frame designed on the basis of stiffness demand [J]. China Civil Engineering Journal, 2014, 47(1): 24-35. DOI:10.15951/j.tmgcxb.2014.01.006. (in Chinese)
[14] Wiebe L, Christopoulos C. Mitigation of higher mode effects in base-rocking systems by using multiple rocking sections[J]. Journal of Earthquake Engineering, 2009, 13(sup1): 83-108. DOI:10.1080/13632460902813315.
[15] Wu S J, Pan P, Zhang D B. Higher mode effects in frame pin-supported wall structure by using a distributed model [J]. Earthquake Engineering and Structural Dynamics, 2016, 45(14): 2371-2387.DOI:10.1002/eqe.2766.
[16] Grigorian C E, Grigorian M. Performance control and efficient design of rocking-wall moment frames[J]. Journal of Structural Engineering, 2016, 142(2): 04015139. DOI:10.1061/(asce)st.1943-541x.0001411.
[17] Grigorian M, Grigorian C. An introduction to the structural design of rocking wall-frames with a view to collapse prevention, self-alignment and repairability [J]. The Structural Design of Tall and Special Buildings, 2016, 25(2): 93-111.DOI:10.1002/tal.1230.
[18] Grigorian M, Grigorian C E. Sustainable earthquake-resisting system [J]. Journal of Structural Engineering, 2018, 144(2): 04017199.DOI:10.1061/(asce)st.1943-541x.0001900.
[19] Nima R, Moghadam A S, Aziminejad A. Continuum analysis approach for rocking core-moment frames [J]. Journal of Structural Engineering, 2018, 144(3): 04018006. DOI:10.1061/(asce)st.1943-541x.0001986.
[20] Wiebe L, Christopoulos C. A cantilever beam analogy for quantifying higher mode effects in multistorey buildings[J]. Earthquake Engineering & Structural Dynamics, 2015, 44: 1697-1716.DOI:10.1002/eqe.2549.
[21] Yang X Y, Wu J, Zhang J, et al. Post-yielding behavior of hinge-supported wall with buckling-restrained braces in base [J]. Journal of Earthquake and Tsunami, 2019, 13(3/4): 1940003.DOI:10.1142/s1793431119400037.
[22] Wang X T, Wang T, Qu Z. An experimental study of a damage-controllable plastic hinge-supported wall structure [J]. Earthquake Engineering and Structural Dynamics, 2018, 47(3): 594-612. DOI:10.1002/eqe.2981.
[23] Yang X Y, Feng Y L, Wu J, et al. Experimental study on seismic performance of hinged truss with buckling-restrained braces at base [J]. Journal of Southeast University(Natural Science Edition), 2018, 48(2): 303-309.(in Chinese)
[24] Clough R W, Penzien J. Dynamics of structures[M]. 3rd eds. Berkeley, CA, USA: Computer & Structures, Inc, 1995.
[25] Chopra A K. Dynamics of structures: Theory and applications to earthquake engineering[M]. Upper Saddle River, NJ, USA: Prentice Hall, 2007.
[26] Ministry of Housing and Urban-Rural Development of the People’s Republic of China. GB 50011—2010 Code for seismic design of Buildings [S]. Beijing: China Architecture and Building Press, 2010.(in Chinese)

Memo

Memo:
Biographies: Yang Xiaoyan(1990—), female, Ph.D. candidate; Wu Jing(corresponding author), male, doctor, professor, seuwj@seu.edu.cn.
Foundation items: The National Key Research and Development Program of China(No.2018YFC0705802), the National Natural Science Foundation of China(No.51978165), the Fundamental Research Funds for the Central Universities(No.3205007720), Postgraduate Research and Practice Innovation Program of Jiangsu Province(No.3205007720).
Citation: Yang Xiaoyan, Wu Jing, Pang Xixi, et al.Higher mode effects in hinged wall with BRBs in base-frame structures using distributed parameter models[J].Journal of Southeast University(English Edition), 2020, 36(1):56-66.DOI:10.3969/j.issn.1003-7985.2020.01.008.
Last Update: 2020-03-20