|Table of Contents|

[1] Fan Jiayu, Xia Jing, Chen Nan, Yan Yongjun, et al. Online SOC estimation based on modified covariance extendedKalman filter for lithium batteries of electric vehicles [J]. Journal of Southeast University (English Edition), 2020, 36 (2): 128-137. [doi:10.3969/j.issn.1003-7985.2020.02.002]
Copy

Online SOC estimation based on modified covariance extendedKalman filter for lithium batteries of electric vehicles()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
36
Issue:
2020 2
Page:
128-137
Research Field:
Traffic and Transportation Engineering
Publishing date:
2020-06-20

Info

Title:
Online SOC estimation based on modified covariance extendedKalman filter for lithium batteries of electric vehicles
Author(s):
Fan Jiayu1 Xia Jing2 Chen Nan1 Yan Yongjun1
1School of Mechanical Engineering, Southeast University, Nanjing 211189, China
2School of Foreign Languages, University of Shanghai for Science and Technology, Shanghai 200093, China
Keywords:
electric vehicle battery management system(BMS) lithium battery parameter identification state of charge(SOC)
PACS:
U463.6
DOI:
10.3969/j.issn.1003-7985.2020.02.002
Abstract:
To offset the defect of the traditional state of charge(SOC)estimation algorithm of lithium battery for electric vehicle and considering the complex working conditions of lithium batteries, an online SOC estimation algorithm is proposed by combining the online parameter identification method and the modified covariance extended Kalman filter(MVEKF)algorithm. Based on the parameters identified on line with the multiple forgetting factors recursive least squares methods, the newly-established algorithm recalculates the covariance in the iterative process with the modified estimation and updates the process gain which is used for the next state estimation to decrease errors of the filter. Experiments including constant pulse discharging and the dynamic stress test(DST)demonstrate that compared with the EKF algorithm, the MVEKF algorithm produces fewer estimation errors and can reduce the errors to 5% at most under the complex charging and discharging conditions of batteries. In the charging process under the DST condition, the EKF produces a larger deviation and lacks stability, while the MVEKF algorithm can estimate SOC stably and has a strong robustness. Therefore, the established MVEKF algorithm is suitable for complex and changeable working conditions of batteries for electric vehicles.

References:

[1] Cai L, Wang X Y, Huang L, et al. Development of battery management system for electric vehicles[J]. Electronic Quality, 2016, 10: 56-58.
[2] Liu X F, Cui B, Liu J J, et al. Real-time correction method for soc estimation of lithium ion battery based on anshimethod[J]. Journal of Automotive Safety and Energy Conservation, 2017, 8(2), 178-182.
[3] Dong G Z, Chen Z H, Wei J W, et al. An online model-based method for state of energy estimation of lithium-ion batteries using dual filters[J]. Journal of Power Sources, 2016, 301: 277-286. DOI:10.1016/j.jpowsour.2015.10.011.
[4] Duong V H, Bastawrous H A, Lim K, et al. Online state of charge and model parameters estimation of the LiFePO4 battery in electric vehicles using multiple adaptive forgetting factors recursive least-squares[J]. Journal of Power Sources, 2015, 296: 215-224. DOI:10.1016/j.jpowsour.2015.07.041.
[5] Xu Z, Gao S B, Yang S F. LiFePO4 battery state of charge estimation based on the improved Thevenin equivalent circuit model and Kalman filtering[J]. Journal of Renewable and Sustainable Energy, 2016, 8(2): 024103. DOI:10.1063/1.4944335.
[6] Lin C, Tang A H, Xing J L. Evaluation of electrochemical models based battery state-of-charge estimation approaches for electric vehicles[J]. Applied Energy, 2017, 207: 394-404. DOI:10.1016/j.apenergy.2017.05.109.
[7] Ning B, Xu J, Cao B G, et al. A sliding mode observer SOC estimation method based on parameter adaptive battery model[J]. Energy Procedia, 2016, 88: 619-626. DOI:10.1016/j.egypro.2016.06.088.
[8] Lin C, Mu H, Xiong R, et al. A novel multi-model probability battery state of charge estimation approach for electric vehicles using H-infinity algorithm[J]. Applied Energy, 2016, 166: 76-83. DOI:10.1016/j.apenergy.2016.01.010.
[9] Guo Y F, Zhao Z S, Huang L M. SOC estimation of lithium battery based on AEKF algorithm[J]. Energy Procedia, 2017, 105: 4146-4152. DOI:10.1016/j.egypro.2017.03.879.
[10] Xiong R, He H W, Sun F C, et al. Evaluation on state of charge estimation of batteries with adaptive extended kalman filter by experiment approach[J]. IEEE Transactions on Vehicular Technology, 2013, 62(1): 108-117. DOI:10.1109/tvt.2012.2222684.
[11] Wang Y J, Zhang C B, Chen Z H. On-line battery state-of-charge estimation based on an integrated estimator[J]. Applied Energy, 2017, 185: 2026-2032. DOI:10.1016/j.apenergy.2015.09.015.
[12] He H W, Xiong R, Guo H Q. Online estimation of model parameters and state-of-charge of LiFePO4 batteries in electric vehicles[J]. Applied Energy, 2012, 89(1): 413-420. DOI:10.1016/j.apenergy.2011.08.005.
[13] Wu Z Q, Shang M Y, Shen D D, et al. Prediction of SOC of lead-acid battery in pure electric vehicle based on BSA-RELM[J]. Journal of Renewable and Sustainable Energy, 2018, 10(5): 054103. DOI:10.1063/1.5038921.
[14] Wang Q, Feng X Y, Zhang B, et al. Power battery state of charge estimation based on extended Kalman filter[J]. Journal of Renewable and Sustainable Energy, 2019, 11(1): 014302. DOI:10.1063/1.5057894.
[15] Liu Z T, He H W. Sensor fault detection and isolation for a lithium-ion battery pack in electric vehicles using adaptive extended Kalman filter[J]. Applied Energy, 2017, 185: 2033-2044. DOI:10.1016/j.apenergy.2015.10.168.
[16] Ouyang Q, Chen J, Zheng J, et al.SOC estimation-based quasi-sliding mode control for cell balancing in lithium-ion battery packs[J]. IEEE Transactions on Industrial Electronics, 2018, 65(4): 3427-3436. DOI:10.1109/tie.2017.2750629.
[17] Huria T, Ludovici G, Lutzemberger G. State of charge estimation of high power lithium iron phosphate cells[J]. Journal of Power Sources, 2014, 249: 92-102. DOI:10.1016/j.jpowsour.2013.10.079.
[18] He H W, Xiong R, Zhang X W, et al. State-of-charge estimation of the lithium-ion battery using an adaptive extended kalman filter based on an improved thevenin model[J]. IEEE Transactions on Vehicular Technology, 2011, 60(4): 1461-1469. DOI:10.1109/tvt.2011.2132812.
[19] Li X Y, Wang Z P, Zhang L. Co-estimation of capacity and state-of-charge for lithium-ion batteries in electric vehicles[J]. Energy, 2019, 174: 33-44. DOI:10.1016/j.energy.2019.02.147.
[20] Hannan M A, Lipu M S H, Hussain A, et al. A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations[J]. Renewable and Sustainable Energy Reviews, 2017, 78: 834-854. DOI:10.1016/j.rser.2017.05.001.

Memo

Memo:
Biographies: Fan Jiayu(1994—), male, graduate; Chen Nan(corresponding author), male, doctor, professor, nchen@seu.edu.cn.
Foundation item: The National Natural Science Foundation of China(No.51375086).
Citation: Fan Jiayu, Xia Jing, Chen Nan, et al. Online SOC estimation based on modified covariance extended Kalman filter for lithium batteries of electric vehicles[J].Journal of Southeast University(English Edition), 2020, 36(2):128-137.DOI:10.3969/j.issn.1003-7985.2020.02.002.
Last Update: 2020-06-20