|Table of Contents|

[1] Zhou Bo, Zheng Xueyao, Kang Zetian, Xue Shifeng, et al. Size-dependent behaviors of viscoelastic axially functionallygraded Timoshenko micro-beam considering Poisson effects [J]. Journal of Southeast University (English Edition), 2020, 36 (2): 170-180. [doi:10.3969/j.issn.1003-7985.2020.02.007]
Copy

Size-dependent behaviors of viscoelastic axially functionallygraded Timoshenko micro-beam considering Poisson effects()
考虑泊松效应的黏弹性轴向功能梯度 Timoshenko微梁的尺寸依赖行为
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
36
Issue:
2020 2
Page:
170-180
Research Field:
Computer Science and Engineering
Publishing date:
2020-06-20

Info

Title:
Size-dependent behaviors of viscoelastic axially functionallygraded Timoshenko micro-beam considering Poisson effects
考虑泊松效应的黏弹性轴向功能梯度 Timoshenko微梁的尺寸依赖行为
Author(s):
Zhou Bo Zheng Xueyao Kang Zetian Xue Shifeng
College of Pipeline and Civil Engineering, China University of Petroleum(East China), Qingdao 266580, China
周博 郑雪瑶 康泽天 薛世锋
中国石油大学(华东)储运与建筑工程学院, 青岛 266580
Keywords:
viscoelastic functionally graded micro-beam size-dependent behaviors size effect functionally graded effect Poisson effect space
黏弹性功能梯度微梁 尺寸依赖行为 尺寸效应 功能梯度效应 泊松效应
PACS:
TP324
DOI:
10.3969/j.issn.1003-7985.2020.02.007
Abstract:
A size-dependent continuum-based model is developed for the functionally graded(FG)Timoshenko micro-beams with viscoelastic properties, in which material parameters vary according to the power law along its axial direction. The size effect is incorporated by employing the modified couple stress theory and Kelvin-Voigt viscoelastic model, so that viscous components are included in the stress and the deviatoric segments of the symmetric couple stress tensors. The components of strain, curvature, stress and couple stress are formulated by combining them with the Timoshenko beam theory. Based on the Hamilton principle, the governing differential equations and boundary conditions for the micro-beam are expressed with arbitrary beam section shape and arbitrary type of loads. The size effect, FG effect, Poisson effect, and the influence of the beam section shape on the mechanical behaviors of viscoelastic FG micro-beams are investigated by taking the simply supported micro-beam subjected to point load as an example. Results show that the size effect on deflection, normal stress and couple stress are obvious when the size of the micro-beam is small enough, and the FG effects are obvious when the size of the micro-beam is large enough. Moreover, the Poisson ratio influences the size effect significantly and the beam section shape is also an important factor influencing the mechanical behavior of the micro-beam.
建立了黏弹性功能梯度(FG)Timoshenko微梁的尺寸依赖连续模型, 其材料参数沿轴向随幂律变化.为研究微梁的尺寸效应, 利用修正偶应力理论和Kelvin-Voigt黏弹性模型将材料的黏性项纳入应力和偶应力张量的偏离分量中;结合Timoshenko梁理论导出了应变、曲率、应力和偶应力的分量;基于哈密顿原理, 给出了任意截面形状的微梁在任意荷载作用下的控制微分方程和边界条件.然后, 以点荷载作用下的简支微梁为例, 研究了尺寸效应、功能梯度效应、泊松效应以及截面形状对黏弹性微梁力学行为的影响.结果表明: 当微梁尺寸足够小时, 其转角、正应力和偶应力的尺寸效应明显; 当微梁尺寸足够大时, 微梁的功能梯度效应较为明显; 此外, 泊松比对尺寸效应影响较大, 梁截面形状也是影响微梁力学性能的重要因素.

References:

[1] Witvrouw A, Mehta A. The use of functionally graded poly-SiGe layers for MEMS applications[J]. Materials Science Forum, 2005, 492/493: 255-260. DOI:10.4028/www.scientific.net/msf.492-493.255.
[2] Lü C F, Lim C W, Chen W Q. Size-dependent elastic behavior of FGM ultra-thin films based on generalized refined theory[J]. International Journal of Solids and Structures, 2009, 46(5): 1176-1185. DOI:10.1016/j.ijsolstr.2008.10.012.
[3] McFarland A W, Colton J S. Role of material microstructure in plate stiffness with relevance tomicrocantilever sensors[J]. Journal of Micromechanics and Microengineering, 2005, 15(5): 1060-1067. DOI:10.1088/0960-1317/15/5/024.
[4] Lam D C C, Yang F, Chong A C M, et al. Experiments and theory in strain gradient elasticity[J]. Journal of the Mechanics and Physics of Solids, 2003, 51(8): 1477-1508. DOI:10.1016/s0022-5096(03)00053-x.
[5] Yang F, Chong A C M, Lam D C C, et al. Couple stress based strain gradient theory for elasticity[J]. International Journal of Solids and Structures, 2002, 39(10): 2731-2743. DOI:10.1016/s0020-7683(02)00152-x.
[6] Ke L L, Yang J, Kitipornchai S, et al. Bending, buckling and vibration of size-dependent functionally graded annular microplates[J]. Composite Structures, 2012, 94(11): 3250-3257. DOI:10.1016/j.compstruct.2012.04.037.
[7] Lei J, He Y M, Zhang B, et al. Bending and vibration of functionally graded sinusoidal microbeams based on the strain gradient elasticity theory[J]. International Journal of Engineering Science, 2013, 72: 36-52. DOI:10.1016/j.ijengsci.2013.06.012.
[8] Thai H T, Vo T P, Nguyen T K, et al. Size-dependent behavior of functionally graded sandwich microbeams based on the modified couple stress theory[J]. Composite Structures, 2015, 123: 337-349. DOI:10.1016/j.compstruct.2014.11.065.
[9] Abazid M A, Sobhy M. Thermo-electro-mechanical bending of FG piezoelectric microplates on Pasternak foundation based on a four-variable plate model and the modified couple stress theory[J]. Microsystem Technologies, 2018, 24(2): 1227-1245. DOI:10.1007/s00542-017-3492-8.
[10] 瘙塁im瘙塂ek M, Reddy J N. Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory[J]. International Journal of Engineering Science, 2013, 64: 37-53. DOI:10.1016/j.ijengsci.2012.12.002.
[11] 瘙塁im瘙塂ek M, Kocatürk T, Akba瘙塂 瘙塁 D. Static bending of a functionally graded microscale Timoshenko beam based on the modified couple stress theory[J]. Composite Structures, 2013, 95: 740-747. DOI:10.1016/j.compstruct.2012.08.036.
[12] Chen X C, Li Y H. Size-dependent post-buckling behaviors of geometrically imperfect microbeams[J]. Mechanics Research Communications, 2018, 88: 25-33. DOI:10.1016/j.mechrescom.2017.12.005.
[13] Alshorbagy A E, Eltaher M A, Mahmoud F F. Free vibration characteristics of a functionally graded beam by finite element method[J]. Applied Mathematical Modelling, 2011, 35(1): 412-425. DOI:10.1016/j.apm.2010.07.006.
[14] Akgöz B, Civalek Ö. Free vibration analysis of axially functionally graded tapered Bernoulli-Euler microbeams based on the modified couple stress theory[J]. Composite Structures, 2013, 98: 314-322. DOI:10.1016/j.compstruct.2012.11.020.
[15] 瘙塁im瘙塂ek M. Size dependent nonlinear free vibration of an axially functionally graded(AFG)microbeam using He’s variational method[J]. Composite Structures, 2015, 131:207-214. DOI:10.1016/j.compstruct.2015.05.004.
[16] Shafiei N, Mirjavadi S S, Afshari B M, et al. Nonlinear thermal buckling of axially functionally graded micro and nanobeams[J]. Composite Structures, 2017, 168: 428-439. DOI:10.1016/j.compstruct.2017.02.048.
[17] Reddy J N, El-Borgi S, Romanoff J. Non-linear analysis of functionally graded microbeams using Eringen’s non-local differential model[J]. International Journal of Non-Linear Mechanics, 2014, 67: 308-318. DOI:10.1016/j.ijnonlinmec.2014.09.014.
[18] Ghayesh M H. Nonlinear dynamics of multilayered microplates[J]. Journal of Computational and Nonlinear Dynamics, 2018, 13(2): 1-12. DOI:10.1115/1.4037596.
[19] Ghayesh M H, Farokhi H. Global dynamics of imperfect axially forced microbeams[J]. International Journal of Engineering Science, 2017, 115: 102-116. DOI:10.1016/j.ijengsci.2017.01.005.
[20] Ghayesh M H, Farokhi H, Gholipour A, et al. On the nonlinear mechanics of layered microcantilevers[J]. International Journal of Engineering Science, 2017, 120: 1-14. DOI:10.1016/j.ijengsci.2017.06.012.
[21] Ghayesh M H, Farokhi H. Nonlinear mechanics of doubly curved shallow microshells[J]. International Journal of Engineering Science, 2017, 119: 288-304. DOI:10.1016/j.ijengsci.2017.06.015.
[22] Gholipour A, Farokhi H, Ghayesh M H. In-plane and out-of-plane nonlinear size-dependent dynamics of microplates[J]. Nonlinear Dynamics, 2015, 79(3): 1771-1785. DOI:10.1007/s11071-014-1773-7.
[23] Hamed E. Bending and creep buckling response of viscoelastic functionally graded beam-columns[J]. Composite Structures, 2012, 94(10): 3043-3051. DOI:10.1016/j.compstruct.2012.04.029.
[24] Ebrahimi F, Barati M R. Hygrothermal effects on vibration characteristics of viscoelastic FG nanobeams based on nonlocal strain gradient theory[J]. Composite Structures, 2017, 159: 433-444. DOI:10.1016/j.compstruct.2016.09.092.
[25] Ghayesh M H. Dynamics of functionally graded viscoelastic microbeams[J]. International Journal of Engineering Science, 2018, 124: 115-131. DOI:10.1016/j.ijengsci.2017.11.004.

Memo

Memo:
Biography: Zhou Bo(1972—), male, doctor, professor, zhoubo@upc.edu.cn.
Foundation items: The National Science and Technology Major Project(No.2017ZX05009-003), the National Key Research and Development Program of China(No.2017YFC0307604), the Talent Foundation of China University of Petroleum(No.Y1215042).
Citation: Zhou Bo, Zheng Xueyao, Kang Zetian, et al.Size-dependent behaviors of viscoelastic axially functionally graded Timoshenko micro-beam considering Poisson effects[J].Journal of Southeast University(English Edition), 2020, 36(2):170-180.DOI:10.3969/j.issn.1003-7985.2020.02.007.
Last Update: 2020-06-20