[1] Witvrouw A, Mehta A. The use of functionally graded poly-SiGe layers for MEMS applications[J]. Materials Science Forum, 2005, 492/493: 255-260. DOI:10.4028/www.scientific.net/msf.492-493.255.
[2] Lü C F, Lim C W, Chen W Q. Size-dependent elastic behavior of FGM ultra-thin films based on generalized refined theory[J]. International Journal of Solids and Structures, 2009, 46(5): 1176-1185. DOI:10.1016/j.ijsolstr.2008.10.012.
[3] McFarland A W, Colton J S. Role of material microstructure in plate stiffness with relevance tomicrocantilever sensors[J]. Journal of Micromechanics and Microengineering, 2005, 15(5): 1060-1067. DOI:10.1088/0960-1317/15/5/024.
[4] Lam D C C, Yang F, Chong A C M, et al. Experiments and theory in strain gradient elasticity[J]. Journal of the Mechanics and Physics of Solids, 2003, 51(8): 1477-1508. DOI:10.1016/s0022-5096(03)00053-x.
[5] Yang F, Chong A C M, Lam D C C, et al. Couple stress based strain gradient theory for elasticity[J]. International Journal of Solids and Structures, 2002, 39(10): 2731-2743. DOI:10.1016/s0020-7683(02)00152-x.
[6] Ke L L, Yang J, Kitipornchai S, et al. Bending, buckling and vibration of size-dependent functionally graded annular microplates[J]. Composite Structures, 2012, 94(11): 3250-3257. DOI:10.1016/j.compstruct.2012.04.037.
[7] Lei J, He Y M, Zhang B, et al. Bending and vibration of functionally graded sinusoidal microbeams based on the strain gradient elasticity theory[J]. International Journal of Engineering Science, 2013, 72: 36-52. DOI:10.1016/j.ijengsci.2013.06.012.
[8] Thai H T, Vo T P, Nguyen T K, et al. Size-dependent behavior of functionally graded sandwich microbeams based on the modified couple stress theory[J]. Composite Structures, 2015, 123: 337-349. DOI:10.1016/j.compstruct.2014.11.065.
[9] Abazid M A, Sobhy M. Thermo-electro-mechanical bending of FG piezoelectric microplates on Pasternak foundation based on a four-variable plate model and the modified couple stress theory[J]. Microsystem Technologies, 2018, 24(2): 1227-1245. DOI:10.1007/s00542-017-3492-8.
[10] 瘙塁im瘙塂ek M, Reddy J N. Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory[J]. International Journal of Engineering Science, 2013, 64: 37-53. DOI:10.1016/j.ijengsci.2012.12.002.
[11] 瘙塁im瘙塂ek M, Kocatürk T, Akba瘙塂 瘙塁 D. Static bending of a functionally graded microscale Timoshenko beam based on the modified couple stress theory[J]. Composite Structures, 2013, 95: 740-747. DOI:10.1016/j.compstruct.2012.08.036.
[12] Chen X C, Li Y H. Size-dependent post-buckling behaviors of geometrically imperfect microbeams[J]. Mechanics Research Communications, 2018, 88: 25-33. DOI:10.1016/j.mechrescom.2017.12.005.
[13] Alshorbagy A E, Eltaher M A, Mahmoud F F. Free vibration characteristics of a functionally graded beam by finite element method[J]. Applied Mathematical Modelling, 2011, 35(1): 412-425. DOI:10.1016/j.apm.2010.07.006.
[14] Akgöz B, Civalek Ö. Free vibration analysis of axially functionally graded tapered Bernoulli-Euler microbeams based on the modified couple stress theory[J]. Composite Structures, 2013, 98: 314-322. DOI:10.1016/j.compstruct.2012.11.020.
[15] 瘙塁im瘙塂ek M. Size dependent nonlinear free vibration of an axially functionally graded(AFG)microbeam using He’s variational method[J]. Composite Structures, 2015, 131:207-214. DOI:10.1016/j.compstruct.2015.05.004.
[16] Shafiei N, Mirjavadi S S, Afshari B M, et al. Nonlinear thermal buckling of axially functionally graded micro and nanobeams[J]. Composite Structures, 2017, 168: 428-439. DOI:10.1016/j.compstruct.2017.02.048.
[17] Reddy J N, El-Borgi S, Romanoff J. Non-linear analysis of functionally graded microbeams using Eringen’s non-local differential model[J]. International Journal of Non-Linear Mechanics, 2014, 67: 308-318. DOI:10.1016/j.ijnonlinmec.2014.09.014.
[18] Ghayesh M H. Nonlinear dynamics of multilayered microplates[J]. Journal of Computational and Nonlinear Dynamics, 2018, 13(2): 1-12. DOI:10.1115/1.4037596.
[19] Ghayesh M H, Farokhi H. Global dynamics of imperfect axially forced microbeams[J]. International Journal of Engineering Science, 2017, 115: 102-116. DOI:10.1016/j.ijengsci.2017.01.005.
[20] Ghayesh M H, Farokhi H, Gholipour A, et al. On the nonlinear mechanics of layered microcantilevers[J]. International Journal of Engineering Science, 2017, 120: 1-14. DOI:10.1016/j.ijengsci.2017.06.012.
[21] Ghayesh M H, Farokhi H. Nonlinear mechanics of doubly curved shallow microshells[J]. International Journal of Engineering Science, 2017, 119: 288-304. DOI:10.1016/j.ijengsci.2017.06.015.
[22] Gholipour A, Farokhi H, Ghayesh M H. In-plane and out-of-plane nonlinear size-dependent dynamics of microplates[J]. Nonlinear Dynamics, 2015, 79(3): 1771-1785. DOI:10.1007/s11071-014-1773-7.
[23] Hamed E. Bending and creep buckling response of viscoelastic functionally graded beam-columns[J]. Composite Structures, 2012, 94(10): 3043-3051. DOI:10.1016/j.compstruct.2012.04.029.
[24] Ebrahimi F, Barati M R. Hygrothermal effects on vibration characteristics of viscoelastic FG nanobeams based on nonlocal strain gradient theory[J]. Composite Structures, 2017, 159: 433-444. DOI:10.1016/j.compstruct.2016.09.092.
[25] Ghayesh M H. Dynamics of functionally graded viscoelastic microbeams[J]. International Journal of Engineering Science, 2018, 124: 115-131. DOI:10.1016/j.ijengsci.2017.11.004.