[1] Wu B, Xu G S, Wang Q, et al. Operator-splitting method for real-time substructure testing [J]. Earthquake Engineering & Structural Dynamics, 2006, 35(3): 293-314. DOI: 10.1002/eqe.519.
[2] Wu B, Bao H, Ou J, et al. Stability and accuracy analysis of the central difference method for real-time substructure testing [J]. Earthquake Engineering & Structural Dynamics, 2005, 34(7): 705-718. DOI:10.1002/eqe.451.
[3] Nakashima M, Kato H, Takaoka E. Development of real-time pseudo dynamic testing [J]. Earthquake Engineering & Structural Dynamics, 1992, 21(1): 79-92. DOI:10.1002/eqe.4290210106.
[4] Wang Z, Wang Z R, Yang J, et al. Secondary development of MTS control system and its application to hybrid tests [J]. Earthquake Engineering and Engineering Dynamics, 2015, 35(2): 22-29. DOI:10.13197/j.eeev.2015.02.22.wangz.003. (in Chinese)
[5] Xu W J, Guo T, Chen C. Research in parameter α of inverse compensation for real-time hybrid simulation [J]. Engineering Mechanics, 2016, 33(6): 61-67. DOI:10.6052/j.issn.1000-4750.2014.12.1075. (in Chinese)
[6] Wu B, Ning X Z, Xu G S, et al. A novel hybrid simulation method considering incomplete boundary conditions [J]. Journal of Vibration and Shock, 2018, 37(15): 150-155. DOI:10.13465/j.cnki.jvs.2018.15.021. (in Chinese)
[7] Kwon O S, Elnashai A S, Spencer B F. A framework for distributed analytical and hybrid simulations [J]. Structural Engineering and Mechanics, 2008, 30(3): 331-350. DOI:10.12989/sem.2008.30.3.331.
[8] Chuang M C, Hsieh S H, Tsai K C, et al. Parameter identification for on-line model updating in hybrid simulations using a gradient-based method [J]. Earthquake Engineering & Structural Dynamics, 2018, 47(2): 269-293. DOI:10.1002/eqe.2950.
[9] Yang Y S, Tsai K C, Elnashai A S, et al. An online optimization method for bridge dynamic hybrid simulations [J]. Simulation Modelling Practice and Theory, 2012, 28: 42-54. DOI:10.1016/j.simpat.2012.06.002.
[10] Wang T, Wu B, Zhang J. Online identification with least square method for pseudo-dynamic tests [J]. Advanced Materials Research, 2011, 250/251/252/253:2455-2459. DOI:10.4028/www.scientific.net/amr.250-253.2455.
[11] Hashemi M J, Masroor A, Mosqueda G. Implementation of online model updating in hybrid simulation [J]. Earthquake Engineering & Structural Dynamics, 2014, 43(3): 395-412. DOI:10.1002/eqe.2350.
[12] Wang T, Wu B. Hybrid testing method based on model updating with constrained unscented Kalman filter [J]. Journal of Earthquake Engineering and Engineering Vibration, 2013, 33(5): 100-109. DOI:10.13197/j.eeev.2013.05.100.wangt.013. (in Chinese)
[13] Wu B, Wang T. Model updating with constrained unscented Kalman filter for hybrid testing [J]. Smart Structures and Systems, 2014, 14(6): 1105-1129. DOI:10.12989/sss.2014.14.6.1105.
[14] Ou G, Dyke S J, Prakash A. Real time hybrid simulation with online model updating: An analysis of accuracy [J]. Mechanical Systems and Signal Processing, 2017, 84: 223-240. DOI:10.1016/j.ymssp.2016.06.015.
[15] Elanwar H H, Elnashai A S. Framework for online model updating in earthquake hybrid simulations [J]. Journal of Earthquake Engineering, 2016, 20(1): 80-100. DOI:10.1080/13632469.2015.1051637.
[16] Wang T, Zhan X H, Meng L Y. Hybrid testing method based on an online neural network algorithm [J]. Journal of Vibration and Shock, 2017, 36(14): 1-8. DOI:10.13465/j.cnki.jvs.2017.14.001. (in Chinese)
[17] Breiman L, Friedman J, Stone C J, et al. Classification and regression trees [M]. Boca Raton, FL, USA: CRC Press, 1984.
[18] Freund Y, Schapire R E. A decision-theoretic generalization of on-line learning and an application to boosting [C]// Proceedings of the Second European Conference on Computational Learning Theory. Berlin: Springer-Verlag, 1995: 23-27. DOI:10.1007/3-540-59119-2_166.
[19] Kim J, Ghaboussi J, Elnashai A S. Hysteretic mechanical-informational modeling of bolted steel frame connections [J]. Engineering Structures, 2012, 45: 1-11. DOI:10.1016/j.engstruct.2012.06.014.