[1] Ji T, Chen C Y, Zhuang Y Z, et al. A mix proportion design method of manufactured sand concrete based on minimum paste theory[J].Construction and Building Materials, 2013, 44: 422-426. DOI:10.1016/j.conbuildmat.2013.02.074.
[2] Shen W G, Liu Y, Wang Z W, et al. Influence of manufactured sand’s characteristics on its concrete performance[J].Construction and Building Materials, 2018, 172: 574-583. DOI:10.1016/j.conbuildmat.2018.03.139.
[3] Lim S K, Tan C S, Chen K P, et al. Effect of different sand grading on strength properties of cement grout[J].Construction and Building Materials, 2013, 38: 348-355. DOI:10.1016/j.conbuildmat.2012.08.030.
[4] Weng Y W, Li M Y, Tan M J, et al. Design 3D printing cementitious materials via Fuller Thompson theory and Marson-Percy model[J].Construction and Building Materials, 2018, 163: 600-610. DOI:10.1016/j.conbuildmat.2017.12.112.
[5] Zhang J B, An X H, Nie D. Effect of fine aggregate characteristics on the thresholds of self-compacting paste rheological properties[J].Construction and Building Materials, 2016, 116: 355-365. DOI:10.1016/j.conbuildmat.2016.04.069.
[6] Vardhan K, Siddique R, Goyal S. Influence of marble waste as partial replacement of fine aggregates on strength and drying shrinkage of concrete[J].Construction and Building Materials, 2019, 228: 116730. DOI:10.1016/j.conbuildmat.2019.116730.
[7] He Z, Cai R J, Chen E, et al. The investigation of early hydration and pore structure for limestone powder wastes blended cement pastes[J].Construction and Building Materials, 2019, 229: 116923. DOI:10.1016/j.conbuildmat.2019.116923.
[8] Bakis A. Increasing the durability and freeze-thaw strength of concrete paving stones produced from ahlat stone powder and marble powder by special curing method[J].Advances in Materials Science and Engineering, 2019, 2019: 1-14. DOI:10.1155/2019/3593710.
[9] Kępniak M, Woyciechowski P, Łukowski P, et al. The durability of concrete modified by waste limestone powder in the chemically aggressive environment[J].Materials, 2019, 12(10): 1693. DOI:10.3390/ma12101693.
[10] Huang Y M, Wang L H. Effect of particle shape of limestone manufactured sand and natural sand on concrete[J].Procedia Engineering, 2017, 210: 87-92. DOI:10.1016/j.proeng.2017.11.052.
[11] Shen W G, Yang Z G, Cao L H, et al. Characterization of manufactured sand: Particle shape, surface texture and behavior in concrete[J].Construction and Building Materials, 2016, 114: 595-601. DOI:10.1016/j.conbuildmat.2016.03.201.
[12] Westerholm M, Lagerblad B, Silfwerbrand J, et al. Influence of fine aggregate characteristics on the rheological properties of mortars[J].Cement and Concrete Composites, 2008, 30(4): 274-282. DOI:10.1016/j.cemconcomp.2007.08.008.
[13] Zhou X W, Liu J Z, Liu G Y, et al. Study of the effect of manufactured sand particle shape on mortar rheological property[J]. China Concrete and Cement Products, 2020(5): 1-5. DOI:10.19761/j.1000-4637.2020.05.001.05. (in Chinese)
[14] Gonçalves J P, Tavares L M, Toledo Filho R D, et al. Comparison of natural and manufactured fine aggregates in cement mortars[J].Cement and Concrete Research, 2007, 37(6): 924-932. DOI:10.1016/j.cemconres.2007.03.009.
[15] Li B X, Ke G J, Zhou M K. Influence of manufactured sand characteristics on strength and abrasion resistance of pavement cement concrete[J].Construction and Building Materials, 2011, 25(10): 3849-3853. DOI:10.1016/j.conbuildmat.2011.04.004.
[16] Aragão F T S, Pazos A R G, Motta L M G D, et al. Effects of morphological characteristics of aggregate particles on the mechanical behavior of bituminous paving mixtures[J].Construction and Building Materials, 2016, 123: 444-453. DOI:10.1016/j.conbuildmat.2016.07.013.
[17] Masad E, Olcott D, White T, et al. Correlation of fine aggregate imaging shape indices with asphalt mixture performance[J].Transportation Research Record: Journal of the Transportation Research Board, 2001, 1757(1): 148-156. DOI:10.3141/1757-17.
[18] Masad E, Al-Rousan T, Bathina M, et al. Analysis of aggregate shape characteristics and its relationship to hot mix asphalt performance[J].Road Materials and Pavement Design, 2007, 8(2): 317-350. DOI:10.1080/14680629.2007.9690077.
[19] Chandan C, Sivakumar K, Masad E, et al. Application of imaging techniques to geometry analysis of aggregate particles[J].Journal of Computing in Civil Engineering, 2004, 18(1): 75-82. DOI:10.1061/(asce)0887-3801(2004)18:1(75).
[20] Masad E, Button J W, Papagiannakis T. Fine-aggregate angularity: Automated image analysis approach[J].Transportation Research Record, 2000, 1721: 66-72. DOI:10.3141/1721-08.
[21] Masad E, Button J W. Unified imaging approach for measuring aggregate angularity and texture[J].Computer-Aided Civil and Infrastructure Engineering, 2000, 15(4): 273-280. DOI:10.1111/0885-9507.00191.
[22] Brzezicki J M, Kasperkiewicz J. Automatic image analysis in evaluation of aggregate shape[J].Journal of Computing in Civil Engineering, 1999, 13(2): 123-128. DOI:10.1061/(asce)0887-3801(1999)13:2(123).
[23] Moaveni M, Wang S N, Hart J M, et al. Evaluation of aggregate size and shape by means of segmentation techniques and aggregate image processing algorithms[J].Transportation Research Record: Journal of the Transportation Research Board, 2013, 2335(1): 50-59. DOI:10.3141/2335-06.
[24] Fletcher T, Chandan C D, Masad E, et al. Aggregate imaging system for characterizing the shape of fine and coarse aggregates[J].Transportation Research Record: Journal of the Transportation Research Board, 2003, 1832(1): 67-77. DOI:10.3141/1832-09.
[25] Zhang D, Huang X M, Zhao Y L. Investigation of the shape, size, angularity and surface texture properties of coarse aggregates[J].Construction and Building Materials, 2012, 34: 330-336. DOI:10.1016/j.conbuildmat.2012.02.096.
[26] Estephane P, Garboczi E J, Bullard J W, et al. Three-dimensional shape characterization of fine sands and the influence of particle shape on the packing and workability of mortars[J].Cement and Concrete Composites, 2019, 97: 125-142. DOI:10.1016/j.cemconcomp.2018.12.018.
[27] Lyu K, Garboczi E J, She W, et al. The effect of rough vs. smooth aggregate surfaces on the characteristics of the interfacial transition zone[J].Cement and Concrete Composites, 2019, 99: 49-61. DOI:10.1016/j.cemconcomp.2019.03.001.
[28] Erdoˇ/gan S T, Forster A M, Stutzman P E, et al. Particle-based characterization of Ottawa sand: Shape, size, mineralogy, and elastic moduli[J].Cement and Concrete Composites, 2017, 83: 36-44. DOI:10.1016/j.cemconcomp.2017.07.003.
[29] Erdogan S T, Quiroga P N, Fowler D W, et al. Three-dimensional shape analysis of coarse aggregates: New techniques for and preliminary results on several different coarse aggregates and reference rocks[J].Cement and Concrete Research, 2006, 36(9): 1619-1627. DOI:10.1016/j.cemconres.2006.04.003.
[30] Garboczi E J, Cheok G S, Stone W C. Using LADAR to characterize the 3-D shape of aggregates: Preliminary results[J].Cement and Concrete Research, 2006, 36(6): 1072-1075. DOI:10.1016/j.cemconres.2006.03.017.
[31] Grigoriu M, Garboczi E, Kafali C. Spherical harmonic-based random fields for aggregates used in concrete[J].Powder Technology, 2006, 166(3): 123-138. DOI:10.1016/j.powtec.2006.03.026.
[32] Bullard J W, Garboczi E J. Defining shape measures for 3D star-shaped particles: Sphericity, roundness, and dimensions[J].Powder Technology, 2013, 249: 241-252. DOI:10.1016/j.powtec.2013.08.015.
[33] Jia X D, Garboczi E J. Advances in shape measurement in the digital world[J].Particuology, 2016, 26: 19-31. DOI:10.1016/j.partic.2015.12.005.
[34] Cepuritis R, Garboczi E J, Jacobsen S. Three dimensional shape analysis of concrete aggregate fines produced by VSI crushing[J].Powder Technology, 2017, 308: 410-421. DOI:10.1016/j.powtec.2016.12.020.
[35] Cepuritis R, Garboczi E J, Jacobsen S, et al. Comparison of 2-D and 3-D shape analysis of concrete aggregate fines from VSI crushing[J].Powder Technology, 2017, 309: 110-125. DOI:10.1016/j.powtec.2016.12.037.
[36] Freeman H. On the encoding of arbitrary geometric configurations[J].IRE Transactions on Electronic Computers, 1961, EC-10(2): 260-268. DOI:10.1109/TEC.1961.5219197.