|Table of Contents|

[1] Yan Feng, Chen Jiahui, Wu Tao, Li Hao, et al. UAV trajectory planning algorithmfor data collection in wireless sensor networks [J]. Journal of Southeast University (English Edition), 2020, 36 (4): 376-384. [doi:10.3969/j.issn.1003-7985.2020.04.002]
Copy

UAV trajectory planning algorithmfor data collection in wireless sensor networks()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
36
Issue:
2020 4
Page:
376-384
Research Field:
Information and Communication Engineering
Publishing date:
2020-12-20

Info

Title:
UAV trajectory planning algorithmfor data collection in wireless sensor networks
Author(s):
Yan Feng1 Chen Jiahui1 Wu Tao2 Li Hao3 Pang Jingming2Liu Wanzhu2 Xia Weiwei1 Shen Lianfeng1
1National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China
2Jiangsu Zhongli Electronic Information Sci-Tech Co., Ltd., Changshu 215542, China
3Science and Technology on Near-Surface Detection Laboratory, Wuxi 214035, China
Keywords:
unmanned aerial vehicle wireless sensor networks trajectory planning data collection value of information
PACS:
TN929.5
DOI:
10.3969/j.issn.1003-7985.2020.04.002
Abstract:
In order to maximize the value of information(VoI)of collected data in unmanned aerial vehicle(UAV)-aided wireless sensor networks(WSNs), a UAV trajectory planning algorithm named maximum VoI first and successive convex approximation(MVF-SCA)is proposed. First, the Rician channel model is adopted in the system and sensor nodes(SNs)are divided into key nodes and common nodes. Secondly, the data collection problem is formulated as a mixed integer non-linear program(MINLP)problem. The problem is divided into two sub-problems according to the different types of SNs to seek a sub-optimal solution with a low complexity. Finally, the MVF-SCA algorithm for UAV trajectory planning is proposed, which can not only be used for daily data collection in the target area, but also collect time-sensitive abnormal data in time when the exception occurs. Simulation results show that, compared with the existing classic traveling salesman problem(TSP)algorithm and greedy path planning algorithm, the VoI collected by the proposed algorithm can be improved by about 15% to 30%.

References:

[1] Ebrahimi D, Sharafeddine S, Ho P H, et al. Data collection in wireless sensor networks using UAV and compressive data gathering[C]//2018 IEEE Global Communications Conference(GLOBECOM). Abu Dhabi, UAE, 2018: 1-7. DOI:10.1109/glocom.2018.8647924.
[2] Ebrahimi D, Sharafeddine S, Ho P H, et al. UAV-aided projection-based compressive data gathering in wireless sensor networks[J]. IEEE Internet of Things Journal, 2019, 6(2): 1893-1905. DOI:10.1109/jiot.2018.2878834.
[3] Ghorbel M B, Rodriguez-Duarte D, Ghazzai H, et al. Joint position and travel path optimization for energy efficient wireless data gathering using unmanned aerial vehicles[J]. IEEE Transactions on Vehicular Technology, 2019, 68(3): 2165-2175. DOI:10.1109/tvt.2019.2893374.
[4] Cao H R, Liu Y X, Yue X J, et al. Cloud-assisted UAV data collection for multiple emerging events in distributed WSNs[J]. Sensors, 2017, 17(8): 1818. DOI:10.3390/s17081818.
[5] Qin Y, Boyle D, Yeatman E. A novel protocol for data links between wireless sensors and UAV based sink nodes[C]//2018 IEEE 4th World Forum on Internet of Things(WF-IoT). Singapore, 2018: 371-376. DOI:10.1109/wf-iot.2018.8355154.
[6] Zhan C, Zeng Y. Completion time minimization for multi-UAV-enabled data collection[J]. IEEE Transactions on Wireless Communications, 2019, 18(10): 4859-4872. DOI:10.1109/twc.2019.2930190.
[7] Zeng Y, Xu J, Zhang R. Energy minimization for wireless communication with rotary-wing UAV[J].IEEE Transactions on Wireless Communications, 2019, 18(4): 2329-2345. DOI:10.1109/twc.2019.2902559.
[8] Cheng C F, Yu C F. Datagathering in wireless sensor networks: A combine-TSP-reduce approach[J]. IEEE Transactions on Vehicular Technology, 2016, 65(4): 2309-2324. DOI:10.1109/tvt.2015.2502625.
[9] Kaul S, Yates R, Gruteser M. Real-time status: How often should one update?[C]//2012 ProceedingsIEEE INFOCOM. Orlando, FL, USA, 2012: 2731-2735. DOI:10.1109/infcom.2012.6195689.
[10] Liu J, Wang X J, Bai B, et al. Age-optimal trajectory planning for UAV-assisted data collection[C]//2018 IEEE Conference on Computer Communications Workshops(INFOCOM WKSHPS). Honolulu, HI, USA, 2018: 553-558. DOI:10.1109/infcomw.2018.8406973.
[11] Abd-Elmagid M A, Ferdowsi A, Dhillon H S, et al. Deep reinforcement learning for minimizing age-of-information in UAV-assisted networks[C]//2019 IEEE Global Communications Conference(GLOBECOM). Waikoloa, HI, USA, 2019: 1-6. DOI:10.1109/globecom38437.2019.9013924.
[12] Abd-Elmagid M A, Pappas N, Dhillon H S. On the role of age of information in the Internet of Things[J]. IEEE Communications Magazine, 2019, 57(12): 72-77. DOI:10.1109/mcom.001.1900041.
[13] Li W Y, Wang L, Fei A G. Minimizing packet expiration loss with path planning in UAV-assisted data sensing[J]. IEEE Wireless Communications Letters, 2019, 8(6): 1520-1523. DOI:10.1109/lwc.2019.2925796.
[14] Samir M, Sharafeddine S, Assi C M, et al. UAV trajectory planning for data collection from time-constrained IoT devices[J]. IEEE Transactions on Wireless Communications, 2020, 19(1): 34-46. DOI:10.1109/twc.2019.2940447.
[15] Hu H M, Xiong K, Qu G, et al. AoI-minimal trajectory planning and data collection in UAV-assisted wireless powered IoT networks[J]. IEEE Internet of Things Journal, 2020. DOI:10.1109/jiot.2020.3012835.
[16] Li J X, Zhao H T, Wang H J, et al. Joint optimization on trajectory, altitude, velocity, and link scheduling for minimum mission time in UAV-aided data collection[J]. IEEE Internet of Things Journal, 2020, 7(2): 1464-1475. DOI:10.1109/jiot.2019.2955732.
[17] Liu J, Tong P, Wang X J, et al. UAV-aided data collection for information freshness in wireless sensor networks[J]. IEEE Transactions on Wireless Communications, 2020. DOI:10.1109/twc.2020.3041750.
[18] Turgut D, Boloni L. A pragmatic value-of-information approach for intruder tracking sensor networks[C]//2012 IEEE International Conference on Communications(ICC). Ottawa, ON, Canada, 2012: 4931-4936. DOI:10.1109/icc.2012.6364380.
[19] Bidoki N H, Baghdadabad M B, Sukthankar G, et al. Joint value of information and energy aware sleep scheduling in wireless sensor networks: a linear programming approach[C]//2018 IEEE International Conference on Communications(ICC). Kansas City, MO, USA, 2018: 1–6. DOI:10.1109/icc.2018.8422392.
[20] Khan F, Butt S, Khan S, et al. Value ofinformation based data retrieval in UWSNs[J]. Sensors, 2018, 18(10): 3414-3441. DOI:10.3390/s18103414.
[21] B�F6;l�F6;ni L, Turgut D. Value of information based scheduling of cloud computing resources[J]. Future Generation Computer Systems, 2017, 71: 212-220. DOI:10.1016/j.future.2016.10.024.
[22] Xu J, Solmaz G, Rahmatizadeh R, et al. Providing distribution estimation for animal tracking with unmanned aerial vehicles[C]//2018 IEEE Global Communications Conference(GLOBECOM). Abu Dhabi, UAE, 2018: 1-6. DOI:10.1109/glocom.2018.8647784.
[23] Zhan C, Zeng Y, Zhang R. Energy-efficient data collection in UAV enabled wireless sensor network[J]. IEEE Wireless Communications Letters, 2018, 7(3): 328-331. DOI:10.1109/lwc.2017.2776922.
[24] Arfaoui M A, Ghrayeb A, Assi C M. Secrecy performance of multi-user MISO VLC broadcast channels with confidential messages[J]. IEEE Transactions on Wireless Communications, 2018, 17(11): 7789-7800. DOI:10.1109/twc.2018.2871055.

Memo

Memo:
Biography: Yan Feng(1983—), male, doctor, associate professor, feng.yan@seu.edu.cn.
Foundation items: The National Key R& D Program of China(No.2018YFB1500800), the Specialized Development Foundation for the Achievement Transformation of Jiangsu Province(No.BA2019025), Pre-Research Fund of Science and Technology on Near-Surface Detection Laboratory(No.6142414190405), the Open Project of the Key Laboratory of Wireless Sensor Network & Communication of Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences(No.20190907).
Citation: Yan Feng, Chen Jiahui, Wu Tao, et al. UAV trajectory planning algorithm for data collection in wireless sensor networks[J].Journal of Southeast University(English Edition), 2020, 36(4):376-384.DOI:10.3969/j.issn.1003-7985.2020.04.002.
Last Update: 2020-12-20