[1] Li K L, Tang X Y, Li K Q. Energy-efficient stochastic task scheduling on heterogeneous computing systems[J].IEEE Transactions on Parallel and Distributed Systems, 2014, 25(11): 2867-2876. DOI:10.1109/TPDS.2013.270.
[2] Jiang J, Lin Y, Xie G, et al. Energy optimization heuristic for deadline-constrained workflows in heterogeneous distributed systems[J].Journal of Computer Research and Development, 2016, 53(7): 1503-1516.(in Chinese)
[3] Tanenbaum A. Modern operating systems[M]. Beijing: China Machine Press, 2009.
[4] Yang G W, Jin H, Li M L, et al. Grid computing in China[J].Journal of Grid Computing, 2004, 2(2): 193-206. DOI:10.1007/s10723-004-4201-2.
[5] To W M, Lai L S L, Chung A W L. Cloud computing in China: Barriers and potential[J].IT Professional, 2013, 15(3): 48-53. DOI:10.1109/mitp.2012.64.
[6] Shi W S, Cao J, Zhang Q, et al. Edge computing: Vision and challenges[J]. IEEE Internet of Things Journal, 2016, 3(5): 637-646. DOI:10.1109/jiot.2016.2579198.
[7] Huang B, Xia W, Zhang Y, et al. Dependent task assignment algorithm based on particle swarm optimization and simulated annealing in ad-hoc mobile cloud[J]. Journal of Southeast University(English Edition), 2018, 34(4):430-438.
[8] Deelman E, Gannon D, Shields M, et al. Workflows and e-Science: An overview of workflow system features and capabilities[J].Future Generation Computer Systems, 2009, 25(5): 528-540. DOI:10.1016/j.future.2008.06.012.
[9] Bharathi S, Chervenak A, Deelman E, et al. Characterization of scientific workflows[C]// Third Workshop on Workflows in Support of Large-Scale Science. Austin, TX, USA, 2008: 1-10.
[10] Jiang J Q, Lin Y P, Xie G Q, et al. Time and energy optimization algorithms for the static scheduling of multiple workflows in heterogeneous computing system[J].Journal of Grid Computing, 2017, 15(4): 435-456. DOI:10.1007/s10723-017-9391-5.
[11] Oliveira D, Brinkmann A, Rosa N, et al. Performability evaluation and optimization of workflow applications in cloud environments[J].Journal of Grid Computing, 2019, 17(4): 749-770. DOI:10.1007/s10723-019-09476-0.
[12] Jia Y H, Chen W N, Yuan H Q, et al. An intelligent cloud workflow scheduling system with time estimation and adaptive ant colony optimization[J].IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, pp(99): 1-16. DOI:10.1109/tsmc.2018.2881018.
[13] Zhou J L, Wang T, Cong P J, et al. Cost and makespan-aware workflow scheduling in hybrid clouds[J].Journal of Systems Architecture, 2019, 100: 101631. DOI:10.1016/j.sysarc.2019.08.004.
[14] Zhao L P, Ren Y Z, Sakurai K. Reliable workflow scheduling with less resource redundancy[J].Parallel Computing, 2013, 39(10): 567-585. DOI:10.1016/j.parco.2013.06.003.
[15] Garg R, Mittal M, Son L H. Reliability and energy efficient workflow scheduling in cloud environment[J].Cluster Computing, 2019, 22(4): 1283-1297. DOI:10.1007/s10586-019-02911-7.
[16] Zhou J L, Zhang M, Sun J, et al. DRHEFT: Deadline-constrained reliability-aware HEFT algorithm for real-time heterogeneous MPSoC systems[J/OL]. IEEE Transactions on Reliability, 2020.http://ieeexplore.ieee.org/abstract/document/9063674. DOI: 10.1109/TR.2020.2981419.
[17] Topcuoglu H, Hariri S, Wu M Y. Performance-effective and low-complexity task scheduling for heterogeneous computing[J]. IEEE Transactions on Parallel and Distributed Systems, 2002, 13(3): 260-274. DOI:10.1109/71.993206.
[18] Bittencourt L F, Sakellariou R, Madeira E R M. DAG scheduling using a lookahead variant of the heterogeneous earliest finish time algorithm[C]// Proceedings of the 2010 18th Euromicro Conference on Parallel, Distributed and Network-Based Processing. IEEE Computer Society, 2010: 27-34.
[19] Wang X L, Huang H B, Deng S. List scheduling algorithm for static task with precedence constraints for cyber-physical systems[J]. Acta Automatica Sinica, 2012, 38(11): 1870. DOI:10.3724/sp.j.1004.2012.01870.
[20] Xie G Q, Li R F, Li K Q. Heterogeneity-driven end-to-end synchronized scheduling for precedence constrained tasks and messages on networked embedded systems[J]. Journal of Parallel and Distributed Computing, 2015, 83: 1-12. DOI:10.1016/j.jpdc.2015.04.005.
[21] Canon L C, Jeannot E, Sakellariou R, et al. Comparative evaluation of the robustness of DAG scheduling heuristics[M]//Grid Computing. Boston, MA, USA: Springer US, 2008: 73-84. DOI:10.1007/978-0-387-09457-1_7.
[22] Sih G C, Lee E A. A compile-time scheduling heuristic for interconnection-constrained heterogeneous processor architectures[J]. IEEE Transactions on Parallel and Distributed Systems, 1993, 4(2): 175-187. DOI:10.1109/71.207593.
[23] Daoud M I, Kharma N. A high performance algorithm for static task scheduling in heterogeneous distributed computing systems[J]. Journal of Parallel and Distributed Computing, 2008, 68(4): 399-409. DOI:10.1016/j.jpdc.2007.05.015.
[24] Sun J, Yin L, Zou M H, et al. Makespan-minimization workflow scheduling for complex networks with social groups in edge computing[J]. Journal of Systems Architecture, 2020, 108: 101799. DOI:10.1016/j.sysarc.2020.101799.
[25] Huang K C, Gu D S, Liu H C, et al. Task clustering heuristics for efficient execution time reduction in workflow scheduling[J]. Journal of Computers, 2017, 28(1): 43-56.
[26] Gupta I, Kumar M S, Jana P K. Task duplication-based workflow scheduling for heterogeneous cloud environment[C]// 2016 Ninth International Conference on Contemporary Computing(IC3). Noida, India, 2016: 1-7. DOI: 10.1109/IC3.2016.7880207.
[27] TGGTCE. Task graph generator[EB/OL].(2020-05-28)[2020-08-10]. http://sourceforge.net/projects/taskgraphgen/.
[28] Tang Z, Qi L, Cheng Z Z, et al. An energy-efficient task scheduling algorithm in DVFS-enabled cloud environment[J]. Journal of Grid Computing, 2016, 14(1): 55-74. DOI:10.1007/s10723-015-9334-y.
[29] Mei J, Li K L, Zhou X, et al. Fault-tolerant dynamic rescheduling for heterogeneous computing systems[J]. Journal of Grid Computing, 2015, 13(4): 507-525. DOI:10.1007/s10723-015-9331-1.