|Table of Contents|

[1] Hu Changhui, , Zhang Yang, et al. Centre symmetric quadruple pattern-basedillumination invariant measure [J]. Journal of Southeast University (English Edition), 2020, 36 (4): 407-413. [doi:10.3969/j.issn.1003-7985.2020.04.006]
Copy

Centre symmetric quadruple pattern-basedillumination invariant measure()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
36
Issue:
2020 4
Page:
407-413
Research Field:
Computer Science and Engineering
Publishing date:
2020-12-20

Info

Title:
Centre symmetric quadruple pattern-basedillumination invariant measure
Author(s):
Hu Changhui1 2 3 Zhang Yang1 2 Lu Xiaobo1 2 Liu Pan3
1School of Automation, Southeast University, Nanjing 210096, China
2Key Laboratory of Measurement and Control of Complex Systems of Engineering of Ministry of Education, Southeast University, Nanjing 210096, China
3School of Transportation, Southeast University, Nanjing 211189, China
Keywords:
centre symmetric quadruple pattern illumination invariant measure severe illumination variations single sample face recognition
PACS:
TP391.4
DOI:
10.3969/j.issn.1003-7985.2020.04.006
Abstract:
A centre symmetric quadruple pattern-based illumination invariant measure(CSQPIM)is proposed to tackle severe illumination variation face recognition. First, the subtraction of the pixel pairs of the centre symmetric quadruple pattern(CSQP)is defined as the CSQPIM unit in the logarithm face local region, which may be positive or negative. The CSQPIM model is obtained by combining the positive and negative CSQPIM units. Then, the CSQPIM model can be used to generate several CSQPIM images by controlling the proportions of positive and negative CSQPIM units. The single CSQPIM image with the saturation function can be used to develop the CSQPIM-face. Multi CSQPIM images employ the extended sparse representation classification(ESRC)as the classifier, which can create the CSQPIM image-based classification(CSQPIMC). Furthermore, the CSQPIM model is integrated with the pre-trained deep learning(PDL)model to construct the CSQPIM-PDL model. Finally, the experimental results on the Extended Yale B, CMU PIE and Driver face databases indicate that the proposed methods are efficient for tackling severe illumination variations.

References:

[1] Hu C H, Zhang Y, Wu F, et al. Toward driver face recognition in the intelligent traffic monitoring systems[J]. IEEE Transactions on Intelligent Transportation Systems, 2019: 1-14. to be published. DOI:10.1109/tits.2019.2945923.
[2] Wang B, Li W F, Yang W M, et al. Illumination normalization based on weber’s law with application to face recognition[J]. IEEE Signal Processing Letters, 2011, 18(8): 462-465. DOI:10.1109/lsp.2011.2158998.
[3] Lai Z R, Dai D Q, Ren C X, et al. Multiscale logarithm difference edgemaps for face recognition against varying lighting conditions[J]. IEEE Transactions on Image Processing, 2015, 24(6): 1735-1747. DOI:10.1109/tip.2015.2409988.
[4] Hu C H, Lu X B, Ye M J, et al. Singular value decomposition and local near neighbors for face recognition under varying illumination[J]. Pattern Recognition, 2017, 64: 60-83. DOI:10.1016/j.patcog.2016.10.029.
[5] Horn B K P. Robot vision [M]. Cambridge, MA, USA:MIT Press, 1997.
[6] Heikkil�E4; M, Pietik�E4;inen M, Schmid C. Description of interest regions with local binary patterns[J]. Pattern Recognition, 2009, 42(3): 425-436. DOI:10.1016/j.patcog.2008.08.014.
[7] Chakraborty S, Singh S K, Chakraborty P. Centre symmetric quadruple pattern:A novel descriptor for facial image recognition and retrieval[J]. Pattern Recognition Letters, 2018, 115: 50-58. DOI:10.1016/j.patrec.2017.10.015.
[8] Parkhi O M, Vedaldi A, Zisserman A. Deep face recognition[C]//Proceedings of the British Machine Vision Conference. Swansea, UK: British Machine Vision Association, 2015: 1–12. DOI:10.5244/c.29.41.
[9] Deng J K, Guo J, Xue N N, et al. ArcFace: Additive angular margin loss for deep face recognition[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA, USA, 2019: 4690-4699. DOI:10.1109/cvpr.2019.00482.
[10] Hu C H, Lu X B, Liu P, et al. Single sample face recognition under varying illumination via QRCP decomposition[J]. IEEE Transactions on Image Processing, 2019, 28(5): 2624-2638. DOI:10.1109/tip.2018.2887346.
[11] Deng W H, Hu J N, Guo J. Extended SRC: Undersampled face recognition via intraclass variant dictionary[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(9): 1864-1870. DOI:10.1109/tpami.2012.30.
[12] Donoho D L, Tsaig Y. Fast solution of L1-norm minimization problems when the solution may be sparse[J]. IEEE Transactions on Information Theory, 2008, 54(11): 4789-4812. DOI:10.1109/tit.2008.929958.
[13] Georghiades A S, Belhumeur P N, Kriegman D J. From few to many: Illumination cone models for face recognition under variable lighting and pose[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(6): 643-660. DOI:10.1109/34.927464.
[14] Sim T, Baker S, Bsat M. The CMU pose, illumination, and expression database[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(12): 1615-1618. DOI:10.1109/tpami.2003.1251154.

Memo

Memo:
Biography: Hu Changhui(1983—), male, doctor, lecturer, 101101881@seu.edu.cn.
Foundation items: The National Natural Science Foundation of China(No.61802203), the Natural Science Foundation of Jiangsu Province(No.BK20180761), China Postdoctoral Science Foundation(No.2019M651653), Postdoctoral Research Funding Program of Jiangsu Province(No.2019K124).
Citation: Hu Changhui, Zhang Yang, Lu Xiaobo, et al.Centre symmetric quadruple pattern-based illumination invariant measure[J].Journal of Southeast University(English Edition), 2020, 36(4):407-413.DOI:10.3969/j.issn.1003-7985.2020.04.006.
Last Update: 2020-12-20