[1] Qu H, Ai X Y, Wang L. Optimizing an integrated inventory-routing system for multi-item joint replenishment and coordinated outbound delivery using differential evolution algorithm[J]. Applied Soft Computing, 2020, 86: 105863. DOI:10.1016/j.asoc.2019.105863.
[2] Chen Y R, Yang L, Jiang Y S, et al. Joint replenishment decision considering shortages, partial demand substitution, and defective items[J]. Computers & Industrial Engineering, 2019, 127: 420-435. DOI:10.1016/j.cie.2018.10.031.
[3] KF6;rpeo11D;lu E, 瘙塁en A, Güler K. Non-cooperative joint replenishment under asymmetric information[J]. European Journal of Operational Research, 2013, 227(3): 434-443. DOI:10.1016/j.ejor.2013.01.004.
[4] He S M, Sethuraman J, Wang X, et al. A noncooperative approach to cost allocation in joint replenishment[J]. Operations Research, 2017, 65(6): 1562-1573. DOI:10.1287/opre.2017.1645.
[5] Levi R, Roundy R, Shmoys D, et al. A constant approximation algorithm for the one-warehouse multiretailer problem[J]. Management Science, 2008, 54(4): 763-776. DOI:10.1287/mnsc.1070.0781.
[6] Cui L G, Deng J, Wang L, et al. A novel locust swarm algorithm for the joint replenishment problem considering multiple discounts simultaneously[J]. Knowledge-Based Systems, 2016, 111: 51-62. DOI:10.1016/j.knosys.2016.08.007.
[7] Sindhuchao S, Romeijn H E, AkE7;ali E, et al. An integrated inventory-routing system for multi-item joint replenishment with limited vehicle capacity[J]. Journal of Global Optimization, 2005, 32(1): 93-118. DOI:10.1007/s10898-004-5908-0.
[8] Wang L, Dun C X, Bi W J, et al. An effective and efficient differential evolution algorithm for the integrated stochastic joint replenishment and delivery model[J]. Knowledge-Based Systems, 2012, 36: 104-114. DOI:10.1016/j.knosys.2012.06.007.
[9] van Eijs M J G, Heuts R M J, Kleijnen J P C. Analysis and comparison of two strategies for multi-item inventory systems with joint replenishment costs[J]. European Journal of Operational Research, 1992, 59(3): 405-412. DOI:10.1016/0377-2217(92)90197-H.
[10] Olsen A L. An evolutionary algorithm to solve the joint replenishment problem using direct grouping[J].Computers & Industrial Engineering, 2005, 48(2): 223-235. DOI:10.1016/j.cie.2005.01.010.
[11] Meca A, Timmer J, García-Jurado I, et al. Inventory games[J]. European Journal of Operational Research, 2004, 156(1): 127-139. DOI:10.1016/S0377-2217(02)00913-X.
[12] Anily S, Haviv M. The cost allocation problem for the first order interaction joint replenishment model[J]. Operations Research, 2007, 55(2): 292-302. DOI:10.1287/opre.1060.0346.
[13] Dror M, Hartman B C. Shipment consolidation: Who pays for it and how much?[J]. Management Science, 2007, 53(1): 78-87. DOI:10.1287/mnsc.1060.0607.
[14] Dror M, Hartman B C, Chang W. The cost allocation issue in joint replenishment[J]. International Journal of Production Economics, 2012, 135(1): 242-254. DOI:10.1016/j.ijpe.2011.07.015.
[15] Ye Y, Li D. Joint replenishment interval-value EOQ model and cooperative game method of the cost allocation [J]. Systems Engineering-Theory & Practice, 2018, 38(7): 1819-1829.(in Chinese)
[16] Ye Y, Li D, Yu G. Joint replenishment interval-value EOQ model and cost allocation method based on variable weight price [J]. Chinese Journal of Management Science, 2019, 27(10): 90-99.(in Chinese)
[17] Chen X, Zhang J W. A stochastic programming duality approach to inventory centralization games[J]. Operations Research, 2009, 57(4): 840-851. DOI:10.1287/opre.1090.0699.
[18] Chen X, Zhang J W. Duality approaches to economic lot-sizing games[J]. Production and Operations Management, 2016, 25(7): 1203-1215. DOI:10.1111/poms.12542.
[19] Qu H, Ai X Y, Wang L. Optimizing an integrated inventory-routing system for multi-item joint replenishment and coordinated outbound delivery using differential evolution algorithm[J]. Applied Soft Computing, 2020, 86: 105863. DOI:10.1016/j.asoc.2019.105863.
[20] Cui L G, Deng J, Zhang Y J, et al. The bare-bones differential evolutionary for stochastic joint replenishment with random number of imperfect items[J]. Knowledge-Based Systems, 2020, 193: 105416. DOI:10.1016/j.knosys.2019.105416.
[21] Ai X Y, Zhang J L, Song D P, et al. Modelling and optimising the multi-item stochastic joint replenishment problem with uncertain lead-time and controllable major ordering cost [J]. European Journal of Industrial Engineering, 2019, 13(6): 746-774.DOI:10.1504/ejie.2019.104280.
[22] Cui L G, Deng J, Zhang Y J, et al. Hybrid differential artificial bee colony algorithm for multi-item replenishment-distribution problem with stochastic lead-time and demands[J]. Journal of Cleaner Production, 2020, 254: 119873. DOI:10.1016/j.jclepro.2019.119873.
[23] Braglia M, Castellano D, Frosolini M. Joint-replenishment problem under stochastic demands with backorders-lost sales mixtures, controllable lead times, and investment to reduce the major ordering cost[J]. Journal of the Operational Research Society, 2016, 67(8): 1108-1120. DOI:10.1057/jors.2016.13.
[24] Poole L W. Profiting from cycle time reductions[J]. Hospital Materiel Management Quarterly, 1997, 18(4): 67-70.
[25] Tersine R J. Principles of inventory and materials management [M]. New Jersey: Prentice-Hall, 1994.
[26] Marcello B, Davide C, Liberatina S, et al. Controlling lead times and minor ordering costs in the joint replenishment problem with stochastic demands under the class of cyclic policies [J]. International Transactions in Operational Research, 2018, 28(1):376-400. DOI:10.1111/itor.12571.
[27] Cui L G, Deng J, Liu R, et al. A stochastic multi-item replenishment and delivery problem with lead-time reduction initiatives and the solving methodologies[J]. Applied Mathematics and Computation, 2020, 374: 125055. DOI:10.1016/j.amc.2020.125055.
[28] Chen Z G, Xu Y, Gia T. Inventory model with nonlinear lead time crashing cost [J]. Forecasting, 2007, 26(1): 64-69.(in Chinese)
[29] Chen Z G, Xu Y, Gia T. Integrated vendor-buyer cooperative inventory model with nonlinear lead time crashing cost [J]. Systems Engineering—Theory & Practice, 2008, 28(3): 64-70.(in Chinese)
[30] Zhang Y, Wang Y, Gong B G. The level coordination for the ameliorating items supply chain considering ordering coordination cost and quantity discount [J]. Chinese Journal of Management Science, 2019, 27(12): 55-66.(in Chinese)
[31] Peters H. Game theory: A multi-leveled approach [M]. Berlin: Springer-Verlag, 2008.