|Table of Contents|

[1] Wang Zhongwei,. Gorenstein dimensions for weak Hopf-Galois extensions [J]. Journal of Southeast University (English Edition), 2020, 36 (4): 483-488. [doi:10.3969/j.issn.1003-7985.2020.04.014]
Copy

Gorenstein dimensions for weak Hopf-Galois extensions()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
36
Issue:
2020 4
Page:
483-488
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2020-12-20

Info

Title:
Gorenstein dimensions for weak Hopf-Galois extensions
Author(s):
Wang Zhongwei
School of Mathematics, Southeast University, Nanjing 211189, China
School of Science, Jinling Institute of Technology, Nanjing 211169, China
Keywords:
weak Hopf algebra integral weak Hopf-Galois extension Gorenstein dimension
PACS:
O153.3
DOI:
10.3969/j.issn.1003-7985.2020.04.014
Abstract:
The representation of weak Hopf algebras is studied by investigating the Gorenstein dimensions of weak Hopf algebras and weak Hopf-Galois extensions. Let H be a weak Hopf algebra with a bijective antipode, A a weak right H-comodule algebra and B the H-coinvariant subalgebra of A. First, some properties of Gorenstein projective H-modules in the representation category are studied, and the fact that Gorenstein global dimension of H is the same as the Gorenstein projective dimension of its left unital subalgebra is demonstrated. Secondly, by applying the integral theory of weak Hopf algebras, on the one hand, a sufficient and necessary condition that a projective A-module is a projective B-module is given; on the other hand, the separability of the functor AB- and that of the restriction of scalar function B(-)are described, respectively. Finally, as a mean result, the Gorenstein global dimension of a weak Hopf-Galois extension is investigated under the condition that H is both semisimple and cosemisimple.

References:

[1] Auslander M, Bridger M. Stable module theory [M]. New York: American Mathematical Society, 1969.
[2] Enochs E E, Jenda O M G. Gorenstein injective and projective modules[J]. Mathematische Zeitschrift, 1995, 220(1): 611-633. DOI:10.1007/bf02572634.
[3] B�F6;hm G, Nill F, Szlach�E1;nyi K. Weak Hopf algebras: Ⅰ. Integral theory and C*-structure[J]. Journal of Algebra, 1999, 221(2): 385-438. DOI:10.1006/jabr.1999.7984.
[4] Montgomery S. Hopf algebras and their actions on rings[M]. Providence, Rhode Island: American Mathematical Society, 1993. DOI:10.1090/cbms/082
[5] Sweedler M. Hopf algebras [M]. New York: Benjamin, 1969.
[6] Nikshych D. On the structure of weak Hopf algebras[J]. Advances in Mathematics, 2002, 170(2): 257-286. DOI:10.1016/s0001-8708(02)92081-5.
[7] Vecsernyés P. Larson-Sweedler theorem and the role of grouplike elements in weak Hopf algebras[J]. Journal of Algebra, 2003, 270(2): 471-520. DOI:10.1016/j.jalgebra.2003.02.001.
[8] Wang Z W, Chen C, Zhang L Y. Morita equivalence for weak Hopf-Galois extensions[J]. Communications in Algebra, 2017, 45(1): 162-182. DOI:10.1080/00927872.2016.1175572.
[9] Wang Z W, Chen Y Y, Zhang L Y. Total integrals for weak Doi-Koppinen data[J]. Algebras and Representation Theory, 2013, 16(4): 931-953. DOI:10.1007/s10468-012-9340-8.
[10] Caenepeel S, Groot E. Modules over weak entwining structures [J]. Contemporary Mathematics, 2000, 267: 31-54.
[11] Raposo A B R. Crossed products for weak Hopf algebras[J]. Communications in Algebra, 2009, 37(7): 2274-2289. DOI:10.1080/00927870802620274.
[12] Caenepeel S, Groot E. Galois theory for weak Hopf algebras [J]. Revue Roumaine de Mathématiques Pures et Appliquées, 2007, 52(2): 151-176.
[13] Enochs E E, Jenda O M G. Relative homological algebra[M]. Berlin, New York: De Gruyter, 2000. DOI:10.1515/9783110803662.
[14] Bennis D, Mahdou N. Global Gorenstein dimensions[J]. Proceedings of the American Mathematical Society, 2010, 138(2): 461-465. DOI:10.1090/s0002-9939-09-10099-0.
[15] Bennis D, Mahdoua N, Ouarghi K. Rings over which all modules are strongly Gorenstein projective[J]. Rocky Mountain Journal of Mathematics, 2010, 40(3): 749-759. DOI:10.1216/rmj-2010-40-3-749.
[16] Mahdou N, Tamekkante M. On(strongly)Gorenstein(semi)hereditary rings[J]. Arabian Journal for Science and Engineering, 2011, 36(3): 431-440. DOI:10.1007/s13369-011-0047-7.
[17] B�F6;hm G, Caenepeel S, Janssen K. Weak bialgebras and monoidal categories[J]. Communications in Algebra, 2011, 39(12): 4584-4607. DOI:10.1080/00927872.2011.616438.
[18] Nikshych D, Turaev V, Vainerman L. Quantum groupoids and invariants of knots and 3-manifolds [J]. Topology and Its Applications, 2003, 127: 91-123.
[19] Wang D G, Yang S L. Representations of weak Hopf algebras associated to cyclic quivers[J]. Communications in Algebra, 2005, 33(11): 4321-4335. DOI:10.1080/00927870500243106.
[20] Niu R F, Wang Y, Zhang L Y. The structure theorem of endomorphism algebras for weak Doi-Hopf modules[J]. Acta Mathematica Hungarica, 2010, 127(3): 273-290. DOI:10.1007/s10474-010-9134-6.
[21] Wang Z W, Chen Y Y, Zhang L Y. Extensions of the endomorphism algebra of weak comodule algebras[J]. Mathematical Notes, 2014, 96(3/4): 342-352. DOI:10.1134/S0001434614090065.
[22] Bohm G. Galois theory for Hopf algebroids[J]. Annali dell’Universita di Ferrara, 2005, 51(1): 233-262. DOI:10.1007/BF02824833.
[23] N�103;st�103;sescu C, van den Bergh M, van Oystaeyen F. Separable functors applied to graded rings[J]. Journal of Algebra, 1989, 123(2): 397-413. DOI:10.1016/0021-8693(89)90053-7.
[24] Nikshych D. A duality theorem for quantum groupoids [J]. Contemporary Mathematics, 2000, 267: 237-243.
[25] Reiten I, Riedtmann C. Skew group algebras in the representation theory of Artin algebras[J]. Journal of Algebra, 1985, 92(1): 224-282. DOI:10.1016/0021-8693(85)90156-5.
[26] Holm H.Gorenstein homological dimensions[J]. Journal of Pure and Applied Algebra, 2004, 189(1/2/3): 167-193. DOI:10.1016/j.jpaa.2003.11.007.

Memo

Memo:
Biography: Wang Zhongwei(1984—), male, doctor, associate professor, wangzhongwei@jit.edu.cn.
Foundation items: The National Natural Science Foundation of China(No.11601203), the China Postdoctoral Science Foundation(No.2018M642128), Qing Lan Project of Jiangsu Province, the Natural Science Foundation of Jiangsu Province(No.BK20150113).
Citation: Wang Zhongwei. Gorenstein dimensions for weak Hopf-Galois extensions[J].Journal of Southeast University(English Edition), 2020, 36(4):483-488.DOI:10.3969/j.issn.1003-7985.2020.04.014.
Last Update: 2020-12-20