[1] He Y, Song K C, Meng Q G, et al. An end-to-end steel surface defect detection approach via fusing multiple hierarchical features[J].IEEE Transactions on Instrumentation and Measurement, 2020, 69(4): 1493-1504. DOI:10.1109/TIM.2019.2915404.
[2] Sezgin M, Sankur B. Survey over image thresholding techniques and quantitative performance evaluation[J]. Journal of Electronic Imaging, 2004, 13(1): 146-165.
[3] Xu K, Xu Y, Zhou P, et al. Application of RNAMlet to surface defect identification of steels[J].Optics and Lasers in Engineering, 2018, 105: 110-117. DOI:10.1016/j.optlaseng.2018.01.010.
[4] You D Y, Gao X D, Katayama S. WPD-PCA-based laser welding process monitoring and defects diagnosis by using FNN and SVM[J].IEEE Transactions on Industrial Electronics, 2015, 62(1): 628-636. DOI:10.1109/TIE.2014.2319216.
[5] Liu Y, Xu K, Wang D D. Online surface defect identification of cold rolled strips based on local binary pattern and extreme learning machine[J].Metals, 2018, 8(3): 197. DOI:10.3390/met8030197.
[6] Vilar R, Zapata J, Ruiz R. An automatic system of classification of weld defects in radiographic images[J].NDT & E International, 2009, 42(5): 467-476. DOI:10.1016/j.ndteint.2009.02.004.
[7] Lecun Y, Bottou L. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324.
[8] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Las Vegas, NV, USA, 2016: 779-788. DOI:10.1109/CVPR.2016.91.
[9] Liu W, Anguelov D, Erhan D, et al. SSD:Single shot MultiBox detector[M]//Computer Vision—ECCV 2016. Cham: Springer International Publishing, 2016: 21-37. DOI:10.1007/978-3-319-46448-0_2.
[10] Girshick R, Donahue J, Darrell T, et al. Region-based convolutional networks for accurate object detection and segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(1): 142-158. DOI:10.1109/TPAMI.2015.2437384.
[11] Li J Y, Su Z F, Geng J H, et al. Real-time detection of steel strip surface defects based on improved YOLO detection network[J].IFAC-Papers OnLine, 2018, 51(21): 76-81. DOI:10.1016/j.ifacol.2018.09.412.
[12] Wei R F, Bi Y B. Research on recognition technology of aluminum profile surface defects based on deep learning[J]. Materials, 2019, 12(10): 1681.
[13] Li Y T, Huang H S, Xie Q S, et al. Research on a surface defect detection algorithm based on MobileNet-SSD[J].Applied Sciences, 2018, 8(9): 1678. DOI:10.3390/app8091678.
[14] Xue Y D, Li Y C. A fast detection method via region-based fully convolutional neural networks for shield tunnel lining defects[J].Computer-Aided Civil and Infrastructure Engineering, 2018, 33(8): 638-654. DOI:10.1111/mice.12367.
[15] Du W Z, Shen H Y, Fu J Z, et al. Approaches for improvement of the X-ray image defect detection of automobile casting aluminum parts based on deep learning[J].NDT & E International, 2019, 107: 102144. DOI:10.1016/j.ndteint.2019.102144.
[16] Yun S, Han D, Chun S, et al. CutMix: Regularization strategy to train strong classifiers with localizable features[C]//2019 IEEE/CVF International Conference on Computer Vision(ICCV). Seoul, South Korea, 2019: 6022-6031. DOI:10.1109/ICCV.2019.00612.
[17] Redmon J, Farhadi A. YOLOv3:An incremental improvement[EB/OL].(2018)[2020-10-20]. https: //arxiv.org/abs/1804.02767
[18] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Las Vegas, NV, USA, 2016: 770-778. DOI:10.1109/CVPR.2016.90.
[19] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]//International Conference on Machine Learning. Lille, France, 2015: 448-456.
[20] Rezatofighi H, Tsoi N, Gwak J, et al. Generalized intersection over union: A metric and a loss for bounding box regression[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Long Beach, CA, USA, 2019: 658-666. DOI:10.1109/CVPR.2019.00075.
[21] Han Z D. Dyna: A method of momentum for stochastic optimization[EB/OL].(2018)[2020-10-20]. https: //arxiv.org/abs/1805.04933.
[22] Arthur D, Vassilvitskii S. K-means++: The advantages of careful seeding[C]//Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms. Philadelphia, USA, 2007: 1027-1035.
[23] Ren S Q, He K M, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. DOI:10.1109/TPAMI.2016.2577031.
[24] Everingham M, van Gool L, Williams C K I, et al. The pascal visual object classes(voc)challenge[J]. International Journal of Computer Vision, 2010, 88(2): 303-338.
[25] Everingham M, Eslami S M A, van Gool L, et al. The pascal visual object classes challenge: A retrospective[J]. International Journal of Computer Vision, 2015, 111(1): 98-136. DOI:10.1007/s11263-014-0733-5.