|Table of Contents|

[1] You Miman, Lu Daowei, Wang Shuanhong,. Crossed products for Hopf group-algebras [J]. Journal of Southeast University (English Edition), 2021, 37 (3): 339-342. [doi:10.3969/j.issn.1003-7985.2021.03.015]
Copy

Crossed products for Hopf group-algebras()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
37
Issue:
2021 3
Page:
339-342
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2021-09-20

Info

Title:
Crossed products for Hopf group-algebras
Author(s):
You Miman1 Lu Daowei2 Wang Shuanhong3
1School of Mathematics and Information Science, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
2Department of Mathematics, Jining University, Qufu 273155, China
3School of Mathematics, Southeast University, Nanjing 211189, China
Keywords:
Hopf π-algebra cleft extension theorem π-comodule-like algebra group crossed products
PACS:
O153
DOI:
10.3969/j.issn.1003-7985.2021.03.015
Abstract:
First, the group crossed product over the Hopf group-algebras is defined, and the necessary and sufficient conditions for the group crossed product to be a group algebra are given. The cleft extension theory of the Hopf group algebra is introduced, and it is proved that the crossed product of the Hopf group algebra is equivalent to the cleft extension. The necessary and sufficient conditions for the crossed product equivalence of two Hopf groups are then given. Finally, combined with the equivalence theory of the Hopf group crossed product and cleft extension, the group crossed product constructed by the general 2-cocycle as algebra is determined to be isomorphic to the group crossed product of the 2-cocycle with a convolutional invertible map of the 2-cocycle. The unit property of a general 2-cocycle is equivalent to the convolutional invertible map of the 2-cocycle, and the combination condition of the weak action is equivalent to the convolutional invertible map of the 2-cocycle and the combination condition of the weak action. Similarly, crossed product algebra constructed by the general 2-cocycle is isomorphic to the Hopf π-crossed product algebra constructed by the 2-cocycle with a convolutional invertible map.

References:

[1] Yukio D, Mitsuhiro T. Cleft comodule algebras for a bialgebra[J]. Communications in Algebra, 1986, 14(5): 801-817. DOI:10.1080/00927878608823337.
[2] Blattner R J, Cohen M, Montgomery S. Crossed products and inner actions of Hopf algebras[J]. Transactions of the American Mathematical Society, 1986, 298(2): 671. DOI:10.1090/s0002-9947-1986-0860387-x.
[3] Buckley M, Fieremans T, Vasilakopoulou C, et al. A Larson-Sweedler theorem for Hopf V-categories[J]. Advances in Mathematics, 2021, 376: 107456. DOI:10.1016/j.aim.2020.107456.
[4] Lu D W, Wang S H. Equivalence of crossed product of linear categories and generalized Maschke theorem [J]. Journal of Southeast University(English Edition)2016, 32(2): 258-260. DOI: 10.3969/j.issn.1003-7985.2016.02.020.
[5] Yan D D, Wang S H. Drinfel’d construction for Hom-Hopf T-coalgebras[J]. International Journal of Mathematics, 2020, 31(8): 2050058. DOI:10.1142/s0129167x20500585.
[6] Gu Y, Wang S H. Hopf quasicomodules and Yetter-Drinfel’d quasicomodules[J]. Communications in Algebra, 2020, 48(1): 351-379. DOI:10.1080/00927872.2019.1646268.
[7] Liu G H, Wang W, Wang S H, et al. A braided T-category over weak monoidal Hom-Hopf algebras[J]. Journal of Algebra and Its Applications, 2020, 19(8): 2050159. DOI:10.1142/s0219498820501595.
[8] Shi G D, Wang S H. Schur-Weyl quasi-duality and(co)triangular Hopf quasigroups[J]. Journal of Mathematical Physics, 2020, 61(5): 051701. DOI:10.1063/5.0005803.
[9] Wang S H. Coquasitriangular Hopf group algebras and Drinfel’d co-doubles[J]. Communications in Algebra, 2006, 35(1): 77-101. DOI:10.1080/00927870601041334.
[10] Wang W, Zhou N, Wang S H. Semidirect products of weak multiplier Hopf algebras: Smash products and smash coproducts[J]. Communications in Algebra, 2018, 46(8): 3241-3261. DOI:10.1080/00927872.2017.1407421.
[11] Zhou N, Wang S H. A duality theorem for weak multiplier Hopf algebra actions[J]. International Journal of Mathematics, 2017, 28(5): 1750032. DOI:10.1142/s0129167x1750032x.
[12] Guo S J, Wang S H. Crossed products of Hopf group-coalgebras [J]. Kodai Mathematical Journal, 2013, 36: 325-342. DOI:10.2298/FIL2004295L.
[13] Guo S J, Wang S H. Morita contexts and partial group Galois extensions for Hopf group coalgebras[J]. Communications in Algebra, 2015, 43(3): 1025-1049. DOI:10.1080/00927872.2013.865037.
[14] Kahng B J, Van Daele A. A class of C-algebraic locally compact quantum groupoids Part Ⅱ. Main theory[J]. Advances in Mathematics, 2019, 354: 106761. DOI:10.1016/j.aim.2019.106761.
[15] Liu L L, Wang S H. Rota-Baxter H-operators and pre-Lie H-pseudoalgebras over a cocommutative Hopf algebra H[J]. Linear and Multilinear Algebra, 2020, 68(11): 2170-2184. DOI:10.1080/03081087.2019.1572710.
[16] Van Daele A, Wang S H. Weak multiplier Hopf algebras Ⅱ: Source and target algebras[J]. Symmetry, 2020, 12(12): 1975. DOI:10.3390/sym12121975.
[17] You M M, Wang S H. A generalized double crossproduct for monoidal Hom-Hopf algebras and the Drinfeld double[J]. Colloquium Mathematicum, 2017, 146(2): 213-238. DOI:10.4064/cm6633-3-2016.

Memo

Memo:
Biographies: You Miman(1984—), female, doctor, lecturer; Lu Daowei(corresponding author), male, doctor, associate professor, ludaowei620@126.com.
Foundation item: The National Natural Science Foundation of China(No. 11871144, 11901240).
Citation: You Miman, Lu Daowei, Wang Shuanhong.Crossed products for Hopf group-algebras[J].Journal of Southeast University(English Edition), 2021, 37(3):339-342.DOI:10.3969/j.issn.1003-7985.2021.03.015.
Last Update: 2021-09-20