[1] Roberge P R. Handbook of corrosion engineering[M]. New York, USA: McGraw-Hill, 2019:25-61.
[2] Volkan C. Corrosion engineering[M]. Beverly: Scrivener Publishing LLC, 2014:1-19.
[3] Dunn W L, Yacout A M. Corrosion detection in aircraft by X-ray backscatter methods[J]. Applied Radiation and Isotopes, 2000, 53(4): 625-632.DOI: 10.1016/S0969-8043(00)00240-2.
[4] Gao T, Sun H, Hong Y. Hidden corrosion detection using laser ultrasonic guided waves with multi-frequency local wavenumber estimation[J]. Ultrasonics, 2020, 108: 106182. DOI: 10.1016/j.ultras.2020.106182.
[5] Doshvarpassand S, Wu C, Wang X. An overview of corrosion defect characterization using active infrared thermography[J]. Infrared Physics & Technology, 2019, 96: 366-389. DOI: 10.1016/j.infrared.2018.12.006.
[6] Wicker M, Alduse B P, Jung S. Detection of hidden corrosion in metal roofing shingles utilizing infrared thermography[J]. Journal of Building Engineering, 2018, 20: 201-207. DOI: 10.1016/j.jobe.2018.07.018.
[7] Dudziak M J, Chervonenkis A Y, Chinarov V. Nondestructive evaluation for crack, corrosion, and stress detection for metal assemblies and structures[C]//Nondestructive Evaluation of Aging Aircraft, Airports, and Aerospace Hardware Ⅲ. International Society for Optics and Photonics, Newport Beach, CA, USA, 1999, 3586: 20-31. DOI: 10.1117/12.339888.
[8] LeCun Y, Boser B, Denker J S. Backpropagation applied to handwritten zip code recognition[J]. Neural computation, 1989, 1(4): 541-551. DOI: 10.1162/neco.1989.1.4.541.
[9] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60: 84-90. DOI: 10.1145/3065386.
[10] Ren S, He K, Girshick R. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2016, 39(6): 1137-1149. DOI: 10.1109/TPAMI.2016.2577031.
[11] Redmon J, Divvala S, Girshick R. You only look once: Unified, real-time object detection[C]// IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA, 2016: 779-788. DOI: 10.1109/CVPR.2016.91.
[12] Redmon J, Farhadi A. YOLO9000: Better, faster, stronger[C]// IEEE Conference on Computer Vision and Pattern Recognition.Honolulu, Hawaii, US, 2017: 6517-6525, doi: 10.1109/CVPR.2017.690.
[13] Fan H B, Hu X X, Liu Y M. Application of deep learning in corrosion detection of power equipment[J]. Guangdong Electric Power, 2020, 33(9): 154-165. DOI: 10.3969/j.issn.1007-290X.2020.009.020.( in Chinese)
[14] Yao Y, Yang Y, Wang Y. Artificial intelligence-based hull structural plate corrosion damage detection and recognition using convolutional neural network[J]. Applied Ocean Research, 2019, 90: 101823. DOI: 10.1016/j.apor.2019.05.008.
[15] Glenn J, Alex S, Jirka B.Ultralytics/yolov5: v3.1-bug fixes and performance improvements[EB/OL].(2020-10-29)[2021-02-01]. https://zenodo.org/record/4154370#.YT4F4nbJ3Us. DOI:10.5281/zenodo.4154370.
[16] He K, Zhang X, Ren S. Deep residual learning for image recognition[C]// IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA, 2016: 770-778.
[17] Sutskever I, Martens J, Dahl G. On the importance of initialization and momentum in deep learning[C]//International Conference on Machine Learning. Atlanta, USA, 2013: 1139-1147.
[18] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]//International Conference on Machine Learning. Stroudsburg, PA, USA, 2015, 37: 448-456. DOI: 10.5555/3045118.3045167.
[19] Nair V, Hinton G E. Rectified linear units improve restricted boltzmann machines[C]// International Conference on International Conference on Machine Learning. Haifa, Israel, 2010: 807-814.