|Table of Contents|

[1] Zhang Baili, Cao Yong, Zhang Pei, Zhang Zhao, et al. Hierarchical annotation method for metal corrosiondetection of power equipment [J]. Journal of Southeast University (English Edition), 2021, 37 (4): 350-355. [doi:10.3969/j.issn.1003-7985.2021.04.002]
Copy

Hierarchical annotation method for metal corrosiondetection of power equipment()
面向变电设备金属锈蚀检测的分层嵌套标注方法
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
37
Issue:
2021 4
Page:
350-355
Research Field:
Automation
Publishing date:
2021-12-20

Info

Title:
Hierarchical annotation method for metal corrosiondetection of power equipment
面向变电设备金属锈蚀检测的分层嵌套标注方法
Author(s):
Zhang Baili1 Cao Yong1 Zhang Pei2 3 Zhang Zhao2 3 He Yina1 Zhong Mingjun4
1School of Computer Science and Engineering, Southeast University, Nanjing 211189, China
2State Key Laboratory of Smart Grid Protection and Control, State Grid Electric Power Research Institute, Nanjing 211106, China
3NARI Group Corporation, Nanjing 211106, China
4Department of Computing Science, University of Aberdeen, Aberdeen AB24 3UE, UK
张柏礼1 曹勇1 张沛2 3 张昭2 3 贺依娜1 钟明军4
1东南大学计算机科学与工程学院, 南京 211189; 2国网电力科学研究院智能电网保护和运行控制国家重点实验室, 南京 211106; 3南瑞集团有限公司, 南京 211106; 4Department of Computing Science, University of Aberdeen, Aberdeen AB24 3UE, UK
Keywords:
deep learning Faster R-CNN YOLOv5 object detection hierarchical annotation
深度学习 Faster R-CNN YOLOv5 目标检测 分层嵌套
PACS:
TP181
DOI:
10.3969/j.issn.1003-7985.2021.04.002
Abstract:
To solve the ambiguity and uncertainty in the labeling process of power equipment corrosion datasets, a novel hierarchical annotation method(HAM)is proposed. Firstly, large boxes are used to label a large area covering the range of corrosion, provided that the area is visually continuous and adjacent to corrosion that cannot be clearly divided. Secondly, in each labeling box established in the first step, regions with distinct corrosion and relative independence are labeled to form a second layer of nested boxes. Finally, a series of comparative experiments are conducted with other common annotation methods to validate the effectiveness of HAM. The experimental results show that, with the help of HAM, the recall of YOLOv5 increases from 50.79% to 59.41%; the recall of Faster R-CNN+VGG16 increases from 66.50% to 78.94%; the recall of Faster R-CNN+Res101 increases from 78.32% to 84.61%. Therefore, HAM can effectively improve the detection ability of mainstream models in detecting metal corrosion.
为解决变电设备锈蚀数据集标注过程中经常遭遇的模糊和不确定问题, 提出了一种基于分层嵌套的训练样本标注方法.首先, 采用较大的矩形框对锈蚀区域进行大面积标注, 将视觉上连续的、相邻的或不能清晰划分的锈蚀区域用一个矩形框标注;然后, 在标注框内对特征明显并具有相对独立性的区域进行二次标注, 形成第2层内部嵌套标注.为了验证分层嵌套方法的有效性, 与常用标记方法进行对比实验.结果表明, 采用分层嵌套标注方法后, YOLOv5模型的召回率由50.79%提升至59.41%, Faster R-CNN+VGG16模型的召回率由66.50%提升至78.94%, Faster R-CNN+Res101模型的召回率由78.32%提升至84.61%.由此可见, 通过分层嵌套标注可以有效提升主流模型在金属锈蚀方面的检测能力.

References:

[1] Roberge P R. Handbook of corrosion engineering[M]. New York, USA: McGraw-Hill, 2019:25-61.
[2] Volkan C. Corrosion engineering[M]. Beverly: Scrivener Publishing LLC, 2014:1-19.
[3] Dunn W L, Yacout A M. Corrosion detection in aircraft by X-ray backscatter methods[J]. Applied Radiation and Isotopes, 2000, 53(4): 625-632.DOI: 10.1016/S0969-8043(00)00240-2.
[4] Gao T, Sun H, Hong Y. Hidden corrosion detection using laser ultrasonic guided waves with multi-frequency local wavenumber estimation[J]. Ultrasonics, 2020, 108: 106182. DOI: 10.1016/j.ultras.2020.106182.
[5] Doshvarpassand S, Wu C, Wang X. An overview of corrosion defect characterization using active infrared thermography[J]. Infrared Physics & Technology, 2019, 96: 366-389. DOI: 10.1016/j.infrared.2018.12.006.
[6] Wicker M, Alduse B P, Jung S. Detection of hidden corrosion in metal roofing shingles utilizing infrared thermography[J]. Journal of Building Engineering, 2018, 20: 201-207. DOI: 10.1016/j.jobe.2018.07.018.
[7] Dudziak M J, Chervonenkis A Y, Chinarov V. Nondestructive evaluation for crack, corrosion, and stress detection for metal assemblies and structures[C]//Nondestructive Evaluation of Aging Aircraft, Airports, and Aerospace Hardware Ⅲ. International Society for Optics and Photonics, Newport Beach, CA, USA, 1999, 3586: 20-31. DOI: 10.1117/12.339888.
[8] LeCun Y, Boser B, Denker J S. Backpropagation applied to handwritten zip code recognition[J]. Neural computation, 1989, 1(4): 541-551. DOI: 10.1162/neco.1989.1.4.541.
[9] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60: 84-90. DOI: 10.1145/3065386.
[10] Ren S, He K, Girshick R. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2016, 39(6): 1137-1149. DOI: 10.1109/TPAMI.2016.2577031.
[11] Redmon J, Divvala S, Girshick R. You only look once: Unified, real-time object detection[C]// IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA, 2016: 779-788. DOI: 10.1109/CVPR.2016.91.
[12] Redmon J, Farhadi A. YOLO9000: Better, faster, stronger[C]// IEEE Conference on Computer Vision and Pattern Recognition.Honolulu, Hawaii, US, 2017: 6517-6525, doi: 10.1109/CVPR.2017.690.
[13] Fan H B, Hu X X, Liu Y M. Application of deep learning in corrosion detection of power equipment[J]. Guangdong Electric Power, 2020, 33(9): 154-165. DOI: 10.3969/j.issn.1007-290X.2020.009.020.( in Chinese)
[14] Yao Y, Yang Y, Wang Y. Artificial intelligence-based hull structural plate corrosion damage detection and recognition using convolutional neural network[J]. Applied Ocean Research, 2019, 90: 101823. DOI: 10.1016/j.apor.2019.05.008.
[15] Glenn J, Alex S, Jirka B.Ultralytics/yolov5: v3.1-bug fixes and performance improvements[EB/OL].(2020-10-29)[2021-02-01]. https://zenodo.org/record/4154370#.YT4F4nbJ3Us. DOI:10.5281/zenodo.4154370.
[16] He K, Zhang X, Ren S. Deep residual learning for image recognition[C]// IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA, 2016: 770-778.
[17] Sutskever I, Martens J, Dahl G. On the importance of initialization and momentum in deep learning[C]//International Conference on Machine Learning. Atlanta, USA, 2013: 1139-1147.
[18] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]//International Conference on Machine Learning. Stroudsburg, PA, USA, 2015, 37: 448-456. DOI: 10.5555/3045118.3045167.
[19] Nair V, Hinton G E. Rectified linear units improve restricted boltzmann machines[C]// International Conference on International Conference on Machine Learning. Haifa, Israel, 2010: 807-814.

Memo

Memo:
Biography: Zhang Baili(1970—), male, doctor, associate professor, 402468432@qq.com.
Foundation items: The National Key R&D Program of China(No. 2018YFC0830200), the Open Research Fund from State Key Laboratory of Smart Grid Protection and Control(No. NARI-T-2-2019189), Rapid Support Project(No. 61406190120), the Fundamental Research Funds for the Central Universities(No. 2242021k10011).
Citation: Zhang Baili, Cao Yong, Zhang Pei, et al.Hierarchical annotation method for metal corrosion detection of power equipment[J].Journal of Southeast University(English Edition), 2021, 37(4):350-355.DOI:10.3969/j.issn.1003-7985.2021.04.002.
Last Update: 2021-12-20