|Table of Contents|

[1] Song Shoupeng, Chen Yiqian, Xu Baowen, Qiu Yue, et al. Finite rate of innovation sparse samplingfor a binary frequency-coded ultrasonic signal [J]. Journal of Southeast University (English Edition), 2022, 38 (1): 27-35. [doi:10.3969/j.issn.1003-7985.2022.01.005]
Copy

Finite rate of innovation sparse samplingfor a binary frequency-coded ultrasonic signal()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
38
Issue:
2022 1
Page:
27-35
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2022-03-20

Info

Title:
Finite rate of innovation sparse samplingfor a binary frequency-coded ultrasonic signal
Author(s):
Song Shoupeng Chen Yiqian Xu Baowen Qiu Yue
School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
Keywords:
coded ultrasonic signal finite rate of innovation high-order moment sparse sampling circuit implementation
PACS:
TB551
DOI:
10.3969/j.issn.1003-7985.2022.01.005
Abstract:
To achieve sparse sampling on a coded ultrasonic signal, the finite rate of innovation(FRI)sparse sampling technique is proposed on a binary frequency-coded(BFC)ultrasonic signal. A framework of FRI-based sparse sampling for an ultrasonic signal pulse is presented. Differences between the pulse and the coded ultrasonic signal are analyzed, and a response mathematical model of the coded ultrasonic signal is established. A time-domain transform algorithm, called the high-order moment method, is applied to obtain a pulse stream signal to assist BFC ultrasonic signal sparse sampling. A sampling of the output signal with a uniform interval is then performed after modulating the pulse stream signal by a sampling kernel. FRI-based sparse sampling is performed using a self-made circuit on an aluminum alloy sample. Experimental results show that the sampling rate reduces to 0.5 MHz, which is at least 12.8 MHz in the Nyquist sampling mode. The echo peak amplitude and the time of flight are estimated from the sparse sampling data with maximum errors of 9.324% and 0.031%, respectively. This research can provide a theoretical basis and practical application reference for reducing the sampling rate and data volume in coded ultrasonic testing.

References:

[1] Song S P, Qiao M L. Research on ultrasonic testing of plate weld flaw based on NLFM Barker coded excitation method[J]. Chinese Journal of Scientific Instrument, 2020, 41(4): 247-254. DOI:10.19650/j.cnki.cjsi.J2006070. (in Chinese)
[2] Hutchins D, Burrascano P, Davis L, et al. Coded waveforms for optimised air-coupled ultrasonic nondestructive evaluation[J]. Ultrasonics, 2014, 54(7): 1745-1759. DOI:10.1016/j.ultras.2014.03.007.
[3] Newhouse V L, Cathignol D, Chapelon J Y. Introduction to ultrasonic pseudo-random code systems[J]. Progress in Medical Imaging, 1988: 215-226. DOI:10.1007/978-1-4612-3866-9_5.
[4] Polpetta A, Banelli P. Design and performance of Huffman sequences in medical ultrasound coded excitation[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2012, 59(4): 630-647. DOI:10.1109/TUFFC.2012.2242.
[5] Zhao H, L Mo L Y, Gao S K. Barker-coded ultrasound color flow imaging: Theoretical and practical design considerations[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2007, 54(2): 319-331. DOI:10.1109/TUFFC.2007.246.
[6] Misaridis T, Jensen J A. Use of modulated excitation signals in medical ultrasound. Part Ⅱ: Design and performance for medical imaging applications[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52(2): 192-207. DOI:10.1109/TUFFC.2005.1406546.
[7] Misaridis T, Jensen J A. Use of modulated excitation signals in medical ultrasound. Part Ⅱ: Design and performance for medical imaging applications[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52(2): 192-207. DOI:10.1109/tuffc.2005.1406546.
[8] Vetterli M, Marziliano P, Blu T. Sampling signals with finite rate of innovation[J]. IEEE Transactions on Signal Processing, 2002, 50(6): 1417-1428. DOI:10.1109/TSP.2002.1003065.
[9] Song S P, Shao Y H. Ultrasonic signal finite rate of innovation sampling method and application based on self-adaptive pulse width[J]. Chinese Journal of Scientific Instrument, 2016, 37(7): 1492-1499. DOI:10.19650/j.cnki.cjsi.2016.07.007. (in Chinese)
[10] Fu N, Cao J, Huang G X, et al. Parameter measurement of M-ary PSK signals with finite rate of innovation[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 68(5): 1271-1283. DOI:10.1109/TIM.2019.2895438.
[11] Huang G X. Research on sampling of pulse sequence with finite rate of innovation based on spectral information[D]. Harbin: Harbin Institute of Technology, 2019.(in Chinese)
[12] Song S P, Jiang Z.Quadrature demodulation based circuit implementation of pulse stream for ultrasonic signal FRI sparse sampling[J]. Measurement Science and Technology, 2017, 28(3): 035005. DOI:10.1088/1361-6501/28/3/035005.
[13] Berent J, Dragotti P L, Blu T. Sampling piecewise sinusoidal signals with finite rate of innovation methods[J]. IEEE Transactions on Signal Processing, 2010, 58(2): 613-625. DOI:10.1109/TSP.2009.2031717.
[14] Baechler G, Scholefield A, Baboulaz L, et al. Sampling and exact reconstruction of pulses with variable width[J]. IEEE Transactions on Signal Processing, 2017, 65(10): 2629-2644. DOI:10.1109/TSP.2017.2669900.
[15] Tur R, Eldar Y C, Friedman Z. Innovation rate sampling of pulse streams with application to ultrasound imaging[J]. IEEE Transactions on Signal Processing, 2011, 59(4): 1827-1842. DOI:10.1109/TSP.2011.2105480.
[16] Peng C Q. Research on pipeline ultrasonic testing signal sampling method and application based on finite rate of innovation [D]. Zhenjiang: Jiangsu University, 2015.(in Chinese)
[17] Shi Y J, Zeng L. Signal reconstruction algorithm of finite rate of innovation with matrix pencil and principal component analysis[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2017, 100(3): 761-768. DOI:10.1587/transfun.e100.a.761.
[18] Edfors O, Sandell M, van de Beek J J, et al. OFDM channel estimation by singular value decomposition[J]. IEEE Transactions on Communications, 1998, 46(7): 931-939. DOI:10.1109/26.701321.
[19] Behar V, Adam D. Parameter optimization of pulse compression in ultrasound imaging systems with coded excitation[J].Ultrasonics, 2004, 42(10): 1101-1109. DOI:10.1016/j.ultras.2004.02.020.
[20] Hikino O, Belkerdid M A, Malocha D C. Code optimization for direct sequence spread spectrum and SAW-matched filter implementation[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2000, 47(4): 974-983. DOI:10.1109/58.852081.
[21] Han Q B, Wang P, Zheng H. Modified ultrasonic time-of-flight diffraction testing with Barker code excitation for sizing inclined crack[J]. Applied Acoustics, 2018, 140: 153-159. DOI:10.1016/j.apacoust.2018.05.023.
[22] Li M H, Hayward G. Optimal matched filter design for ultrasonic NDE of coarse grain materials[J].AIP Conference Proceedings, 2016, 1706(1): 020011. DOI:10.1063/1.4940457.
[23] Fung A K. A note on the Wiener-Khintchine theorem for autocorrelation[C]//Proceedings of the IEEE. IEEE, 1967: 594-595. DOI:10.1109/PROC.1967.5616.
[24] Kulpa J S. Noise radar sidelobe suppression algorithm using mismatched filter approach[J]. International Journal of Microwave and Wireless Technologies, 2016, 8(6): 865-869. DOI:10.1017/s1759078716000945.
[25] Xu L, Zang H, Zhou S. A design method of phase coded waveform and its mismatched filter [J]. Journal of Xi’an Jiaotong University, 2016, 50(4): 54-59, 75. DOI:10.7652/xjtuxb201604009. (in Chinese)

Memo

Memo:
Biography: Song Shoupeng(1967—), male, doctor, professor, songshoupeng@126.com.
Foundation item: The National Natural Science Foundation of China(No.51375217).
Citation: Song Shoupeng, Chen Yiqian, Xu Baowen, et al. Finite rate of innovation sparse sampling for a binary frequency-coded ultrasonic signal[J].Journal of Southeast University(English Edition), 2022, 38(1):27-35.DOI:10.3969/j.issn.1003-7985.2022.01.005.
Last Update: 2022-03-20